The flow was such that we recorded subtype constraints regardless of the
subject type's nature. Extract value generics handling out of the
devious `else if` chain, and never record any subtype constraints if the
subject type is a non-type parameter.
While we're here, generalize the diagnostic message for user-written
subtype constraints on value generic parameters and emit it
consistently, not just if the right-hand side contains a protocol type.
We would crash in some cases, or produce a slightly misleading
diagnostic about same-element requirements, which are related but
not quite the same.
In the fullness of time, we should figure out this corner of the
language. Until then, add a new diagnostic since this is really
about same-type requirements between concrete types and packs.
Fixes rdar://159790557.
The model for associated types hasn't been fully worked-out for
noncopyable generics, but there is some support already that is being
used by the stdlib for an internal-only (and rather cursed) protocol
`_Pointer` to support `UnsafePointer`, etc.
This patch gates the existing experimental support for associated types
behind a feature flag. This flag doesn't emit feature-guards in
interfaces, since support for it is tied closely to NoncopyableGenerics
and has been there from its early days.
We already need to track the inverses separate from the members in a
ProtocolCompositionType, since inverses aren't real types. Thus, the
only purpose being served by InverseType is to be eliminated by
RequirementLowering when it appears in a conformance requirement.
Instead, we introduce separate type InverseRequirement just to keep
track of which inverses we encounter to facilitate cancelling-out
defaults and ensuring that the inverses are respected after running
the RequirementMachine.
Since there is no propagation of inverse constraints in the requirement
machine, we need to fully desugar these requirements at the point of
defining a generic parameter. That desugaring involves determining which
default conformance requirements need to be applied to a generic
parameter, accounting for inverses.
But, nested generic contexts in scope of those expanded generic
parameters can still write constraints on that outer parameter. For
example, this method's where clause can have its own constraints on `T`:
```
struct S<T> {
func f() where T: ~Copyable {}
}
```
But, the generic signature of `S` already has a `T: Copyable` that was
expanded. The method `f` will always see a `T` that conforms to
`Copyable`, so it's impossible for `f` to claim that it applies for
`T`'s that lack Copyable.
Put another way, it's not valid for this method `f`, whose generic
signature is based on its parent's `S`, to weaken or remove requirements
from parent's signature. Only positive requirements can be
added to them.
We're not yet going to allow noncopyable types into packs, so this
change prevents the use of `~Copyable` on an `each T` generic parameter.
It also fixes how we query for whether a `repeat X` parameter is
copyable.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Note the test cases in abstract_type_witnesses used to pass but are now
rejected. This is fine, because doing anything more complicated used to
crash, and the GSB would crash or misbehave with these examples.