On Windows/AArch64, a different register is used between when an
arugment is both inreg and sret (X0 or X1) and when it is just sret
(X8) as the following comment indicates:
46fe36a429/llvm/lib/Target/AArch64/AArch64CallingConvention.td (L42)
```
// In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
// However, on windows, in some circumstances, the SRet is passed in X0 or X1
// instead. The presence of the inreg attribute indicates that SRet is
// passed in the alternative register (X0 or X1), not X8:
// - X0 for non-instance methods.
// - X1 for instance methods.
// The "sret" attribute identifies indirect returns.
// The "inreg" attribute identifies non-aggregate types.
// The position of the "sret" attribute identifies instance/non-instance
// methods.
// "sret" on argument 0 means non-instance methods.
// "sret" on argument 1 means instance methods.
CCIfInReg<CCIfType<[i64],
CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>,
CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>,
```
So missing/dropping inreg can cause a codegen bug.
This is a partial fix for #74866
Adds sections `__TEXT,__swift_as_entry`, and `__TEXT,__swift_as_ret` that
contain relative pointers to async functlets modelling async function entries,
and function returns, respectively.
Emission of the sections can be trigger with the frontend option
`-Xfrontend -enable-async-frame-push-pop-metadata`.
This is done by:
* IRGen adding a `async_entry` function attribute to async functions.
* LLVM's coroutine splitting identifying continuation funclets that
model the return from an async function call by adding the function
attribute `async_ret`. (see #llvm-project/pull/9204)
* An LLVM pass that keys off these two function attribute and emits the
metadata into the above mention sections.
rdar://134460666
This fixes a runtime crash that occurs when a pointer to a foreign
reference type is passed to objc_retainAutoreleasedReturnValue.
This reverts 335cec0e8d.
rdar://117353222
rdar://129359370
Second part of direct error support. This implements direct errors for async functions. Instead of always returning typed errors indirectly, we are returning them directly when possible.
Conflicts:
- `test/Interop/Cxx/class/method/methods-this-and-indirect-return-irgen-itanium.swift`
previously fixed on rebranch, now fixed on main (slightly differently).
This corresponds to the parameter-passing convention of the Itanium C++
ABI, in which the argument is passed indirectly and possibly modified,
but not destroyed, by the callee.
@in_cxx is handled the same way as @in in callers and @in_guaranteed in
callees. OwnershipModelEliminator emits the call to destroy_addr that is
needed to destroy the argument in the caller.
rdar://122707697
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
If a foreign reference type has a custom retain function, emit a call to
it instead of emitting a call to objc_retainAutoreleasedReturnValue.
rdar://117353222
Call `swift_clearSensitive` after destroying or taking "sensitive" struct types.
Also, support calling C-functions with "sensitive" parameters or return values. In SIL, sensitive types are address-only and so are sensitive parameters/return values.
Though, (small) sensitive C-structs are passed directly to/from C-functions. We need re-abstract such parameter and return values for C-functions.
* Allow normal function results of @yield_once coroutines
* Address review comments
* Workaround LLVM coroutine codegen problem: it assumes that unwind path never returns.
This is not true to Swift coroutines as unwind path should end with error result.
We've been building up this exponential explosion of task-creation
builtins because it's not currently possible to overload builtins.
As long as all of the operands are scalar, though, it's pretty easy
to peephole optional injections in IRGen, which means we can at
least just use a single builtin in SIL and then break it apart in
IRGen to decide which options to set.
I also eliminated the metadata argument, which can easily be recreated
from the substitutions. I also added proper verification for the builtin,
which required (1) getting `@Sendable` right more consistently and (2)
updating a bunch of tests checking for things that are not actually
valid, like passing a function that returns an Int directly.
When ObjC interop is not enabled, we shouldn't be emitting calls to
`objc_retainAutoreleasedReturnValue()` as that function might not exist.
Call `swift_retain()` instead, to balance the `swift_release()` of the
returned value.
Fixes#47846, #45359.
rdar://23335318
Fix a bug in expandExternalSignatureTypes where it wasn't annotating a function call parameter type with sret when the result was being returned indirectly.
The bug was causing calls to ObjC methods that return their results indirectly to crash.
Additionally, fix the return type for C++ constructors computed in expandExternalSignatureTypes. Previously, the return type was always void even on targets that require constructors to return this (e.g., Apple arm64), which was causing C++ constructor thunks to be emitted needlessly.
Resolves rdar://121618707