Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
The buffer of global arrays could already be statically initialized.
The missing piece was the array itself, which is basically a reference to the array buffer.
For example:
```
var a = [1, 2, 3]
```
ends up in two statically initialized globals:
1. the array buffer, which contains the elements
2. the variable `a` which is a single reference (= pointer) of the array buffer
This optimization removes the need for lazy initialization of such variables.
rdar://127757554
Currently only arrays can be put into a read-only data section.
"Regular" classes have dynamically initialized metadata, which needs to be stored into the isa field at runtime.
Static read-only arrays didn't work when passed to ObjectiveC as NSArray.
The storage class of static read-only arrays doesn't carry information about the Element type.
The new `__SwiftDeferredStaticNSArray` is generic over the element type and doesn't have to rely on the element type information of the array storage.
rdar://94185998
This was a stupid oversight. The `flatten` flag needs to be passed through `convert_enum` in `irgen::emitConstantValue`.
Fixes a compiler crash.
rdar://113942221
For example:
```
var p = Point(x: 10, y: 20)
let o = UnsafePointer(&p)
```
Also support outlined arrays with pointers to other globals. For example:
```
var g1 = 1
var g2 = 2
func f() -> [UnsafePointer<Int>] {
return [UnsafePointer(&g1), UnsafePointer(&g2)]
}
```
This patch migrates the compiler off of the deprecated LLVM APIs where I
can.
- APInt::getAllOnesValue -> APInt::getAllOnes
- APInt::getNullValue -> APInt::getZero
- APInt::isNullValue -> APInt::isZero
- APInt::getMinSignedBits -> APInt::getSignificantBits
- clang::Module::submodule_{begin,end} -> clang::Module::submodules
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
The main change here is in IRGen which needs to be able to emit constant enum values.
Use `emitValueInjection` to create the enum constant.
Usually this method creates code in the current function.
But if all arguments to the enum are constant, the builder never has to emit an instruction.
Instead it can constant fold everything and just returns the final constant.
Also, create statically initialized let-globals as constant global (`constant` instead of `global`).
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
The alias defined here with the `.set` directive doesn't actually define a symbolic alias
that the linker respects in all cases. The resulting standard library dylib _does_ contain a
reference to the aliased symbol with the correct value, but the resulting variable is not actually
considered relocatable by the linker. Thus, its value may not always get fixed up properly.
Work around this by dropping the alias for now - directly use the type metadata for Swift.__EmptyArrayStorage
instead.
rdar://100288247
So far, static arrays had to be put into a writable section, because the isa pointer and the (immortal) ref count field were initialized dynamically at the first use of such an array.
But with a new runtime library, which exports the symbols for the (immortal) ref count field and the isa pointer, it's possible to put the whole array into a read-only section. I.e. make it a constant global.
rdar://94185998
This reverts the revert commit df353ff3c0.
Also, I added a frontend option to disable this optimization: `-disable-readonly-static-objects`
So far, static arrays had to be put into a writable section, because the isa pointer and the (immortal) ref count field were initialized dynamically at the first use of such an array.
But with a new runtime library, which exports the symbols for the (immortal) ref count field and the isa pointer, it's possible to put the whole array into a read-only section. I.e. make it a constant global.
rdar://94185998