Rename it to swift_initClassMetadata() just like we recently did
swift_initStructMetadata(), and add a StructLayoutFlags parameter
so we can version calls to this function in the future.
Maybe at some point this will become a separate ClassLayoutFlags
type, but at this point it doesn't matter because IRGen always
passes a value of 0.
Abstract type/heap metadata access goes into MetadataRequest.
Metadata access starting from a heap object goes into GenHeap.
Accessing various components of class metadata goes into GenClass
or MetadataLayout.
This includes global generic and non-generic global access
functions, protocol associated type access functions,
swift_getGenericMetadata, and generic type completion functions.
The main part of this change is that the functions now need to take
a MetadataRequest and return a MetadataResponse, which is capable
of expressing that the request can fail. The state of the returned
metadata is reported as an second, independent return value; this
allows the caller to easily check the possibility of failure without
having to mask it out from the returned metadata pointer, as well
as allowing it to be easily ignored.
Also, change metadata access functions to use swiftcc to ensure that
this return value is indeed returned in two separate registers.
Also, change protocol associated conformance access functions to use
swiftcc. This isn't really related, but for some reason it snuck in.
Since it's clearly the right thing to do, and since I really didn't
want to retroactively tease that back out from all the rest of the
test changes, I've left it in.
Also, change generic metadata access functions to either pass all
the generic arguments directly or pass them all indirectly. I don't
know how we ended up with the hybrid approach. I needed to change all
the code-generation and calls here anyway in order to pass the request
parameter, and I figured I might as well change the ABI to something
sensible.
Now that every foreign type has a type context descriptor, we can use that for a uniquing key instead of a dedicated mangled string, saving some code size especially in code that makes heavy use of imported types. rdar://problem/37537241
Implements the minimum specified by the SE-proposal.
* Add the CaseIterable protocol with AllCases associatedtype and
allCases requirement
* Automatic synthesis occurs for "simple" enums
- Caveat: Availability attributes suppress synthesis. This can be
lifted in the future
- Caveat: Conformance must be stated on the original type
declaration (just like synthesizing Equatable/Hashable)
- Caveat: Synthesis generates an [T]. A more efficient collection
- possibly even a lazy one - should be put here.
This regression wasn't caught by normal testing because the emission
pattern substantially changed anyway, breaking tests that were looking for
the field-offset vector, and because normal execution testing doesn't
actually use the field-offset vector and enum payload size fields.
Reflection, which does use these fields, was skating by for common types
because metadata is typically allocated out of freshly zeroed pages and
most such types have only one field.
Also, don't emit a completion function for value metadata with fixed layout.
We really shouldn't have to emit field-offset vectors for fixed-layout types;
the layout should just go in the type descriptor. But for now, this is what
we have to do.
The allocation phase is guaranteed to succeed and just puts enough
of the structure together to make things work.
The completion phase does any component metadata lookups that are
necessary (for the superclass, fields, etc.) and performs layout;
it can fail and require restart.
Next up is to support this in the runtime; then we can start the
process of making metadata accessors actually allow incomplete
metadata to be fetched.
The layout changes to become relative-address based. For this to be
truly immutable (at least on Darwin), things like the RO data patterns
must be moved out of the pattern header. Additionally, compress the
pattern header so that we do not include metadata about patterns that
are not needed for the type.
Value metadata patterns just include the metadata kind and VWT.
The design here is meant to accomodate non-default instantiation
patterns should that become an interesting thing to support in the
future, e.g. for v-table specialization.
Change the "metadata base offset" variable into a "class metadata bounds"
variable that contains the base offset and the +/- bounds on the class.
Link this variable from the class descriptor when the class has a resilient
superclass; otherwise, store the +/- bounds there. Use this variable to
compute the immediate-members offset for various runtime queries. Teach the
runtime to fill it in lazily and remove the code to compute it from the
generated code for instantiation. Identify generic arguments with the start
of the immediate class metadata members / end of the {struct,enum} metadata
header and remove the generic-arguments offset from generic type descriptors.
Minimize the generic class metadata template by removing the
class header and base-class members. Add back the set of
information that's really required for instantiation.
Teach swift_allocateGenericClass how to allocate classes without
superclass metadata. Reorder generic initialization to establish
a stronger phase-ordering between allocation (the part that doesn't
really care about the generic arguments) and initialization (the
part that really does care about the generic arguments and therefore
might need to be delayed to handle metadata cycles).
A similar thing needs to happen for resilient class relocation.
This is yet another waypoint on the path towards the final
generic-metadata design. The immediate goal is to make the
pattern a private implementation detail and to give the runtime
more visibility into the allocation and caching of generic types.
All of the information contained by this field (list of property names)
is already encoded as part of the field reflection metadata and
is accessible via `swift_getFieldAt` runtime method.
@objc protocols don't have witness tables. However, both type metadata
(in the nominal type descriptors) and the runtime code to demangle
type names into metadata weren't acknowledging this. Fix type metadata
emission to not count an "extra argument" for @objc protocol
conformance requirements, and teach the runtime code to properly look
for conformances to @objc protocols (through the Objective-C runtime)
and not record witness tables for them.
This makes resolving mangled names to nominal types in the same module more efficient, and for eventual secrecy improvements, also allows types in the same module to be referenced from mangled typerefs without encoding any source-level name information about them.
Extend protocol conformance descriptors with two more bits of information:
* For retroactive conformances, add the module in which the conformance
occurs. This will eventually be used for error reporting/ambiguity
resolution when retroactive conformances collide.
* For conditional conformances, add the conditional requirements. We need
these for runtime evaluation of conditional conformances.
Also remove the decl from the known decls and remove a
bunch of code referencing that decl as well as a bunch of other
random things including deserialization support.
This includes removing some specialized diagnostics code that
matched the identifier ImplicitlyUnwrappedOptional, and tweaking
diagnostics for various modes and various issues.
Fixes most of rdar://problem/37121121, among other things.
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
All Swift-defined nominal types have their runtime metadata recorded
in a special section, so it can be found later. This recording is
suppressed when that type is stated to conform to a protocol, because
the runtime can find nominal types in either place.
Imported types would get their conformances recorded, but would not
get recorded in the runtime metadata record otherwose. Therefore, the
runtime would not be able to find such types by name.
For any foreign type whose metadata we emit, make sure that metadata
can be found by a runtime lookup.
Emit nominal type access functions for imported types. These access
functions work with non-unique metadata references, so they perform
uniquing through the runtime on first access.
Fixes rdar://problem/36430234.
Extend protocol descriptors with a field for the superclass bound of the
protocol itself. This carves out space in the ABI for
class C { }
protocol P : C { ... }
although the feature is not yet implemented.
* Don't emit "stable ABI masquerading as legacy ABI" bit state yet.
* Don't unconditionally emit bit value 1 in generic class templates.
rdar://36612173