The previous implementation assumes `UnsafePointer` has no requirements
on its generic parameter. This fix handles any requirements that may be
present on the parameter. With NoncopyableGenerics, the generic
parameter actually does gain a requirement.
I've renamed the method to `TypeDecl::isNoncopyable`, because the query
doesn't make sense for many other kinds of `ValueDecl`'s beyond the
`TypeDecl`'s. In fact, it looks like no one was relying on that anyway.
Thus, we now have a distinction where in Sema, you ask whether
a `Type` or `TypeDecl` is "Noncopyable". But within SIL, we still
preserve the notion of "move-only" since there is additionally the
move-only type wrapper for types that otherwise support copying.
Moving the query implementation up to the AST library from SIL will allow
conveniences to be written on specific AST element classes. For instance, this
will allow `EnumDecl` to expose a convenience that enumerates element decls
that are available during lowering.
Also, improve naming and documentation for these queries.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
* [IRGen] Support additional single payload enum cases in layout strings
rdar://105837101
Adds layout string support for single payload enums with simple (non-scattered) extra inhabitant patterns
* Add more test cases
* [IRGen] Make pointers to accessor functions in layout strings relative
rdar://106319336
Pointers embedded in static layout strings should always be relative, so layout strings can reside in read-only memory.
* Properly handle reference storage ownership
* Pass layout tag and metadata / type layout ppointers separately
* Layout string instantiation fully working
* Fix cases where hasLayoutString flag was not set when it should have
* Update include/swift/ABI/Metadata.h
And use the new bit to ensure we don't try to lower move-only types
with common layout value witness surrogates. Take a bit in the runtime
value witness flags to represent types that are not copyable.
Noncopyable types aren't really "POD", but the bit is still useful to track
whether a noncopyable type has a no-op destroy operation, so rename the
existing bit to be more specific within IRGen's implementation.
Don't rename it in the runtime or Builtin names yet, since doing so will
require a naming transition for compatibility.
rdar://105837040
* WIP: Store layout string in type metadata
* WIP: More cases working
* WIP: Layout strings almost working
* Add layout string pointer to struct metadata
* Fetch bytecode layout strings from metadata in runtime
* More efficient bytecode layout
* Add support for interpreted generics in layout strings
* Layout string instantiation, take and more
* Remove duplicate information from layout strings
* Include size of previous object in next objects offset to reduce number of increments at runtime
* Add support for existentials
* Build type layout strings with StructBuilder to support target sizes and metadata pointers
* Add support for resilient types
* Properly cache layout strings in compiler
* Generic resilient types working
* Non-generic resilient types working
* Instantiate resilient type in layout when possible
* Fix a few issues around alignment and signing
* Disable generics, fix static alignment
* Fix MultiPayloadEnum size when no extra tag is necessary
* Fixes after rebase
* Cleanup
* Fix most tests
* Fix objcImplementattion and non-Darwin builds
* Fix BytecodeLayouts on non-Darwin
* Fix Linux build
* Fix sizes in linux tests
* Sign layout string pointers
* Use nullptr instead of debug value
The `deinit` takes full responsibility for destroying the value, using the
user-defined deinit body and implicitly destroying any remaining resources
not consumed during the deinit.
Remaining to do after this patch:
- Run the deinit for enums
- Pass generic arguments for generic move-only types
- Handle deinits that take their parameter indirectly
- Teach value witness layout about when types are move-only and/or have
deinits, so that we don't attempt to give move-only types standard
value witness tables or share box metadata with copyable payloads
* Introduce TypeLayout Strings
Layout strings encode the structure of a type into a byte string that can be
interpreted by a runtime function to achieve a destroy or copy. Rather than
generating ir for a destroy/assignWithCopy/etc, we instead generate a layout
string which encodes enough information for a called runtime function to
perform the operation for us. Value witness functions tend to be quite large,
so this allows us to replace them with a single call instead. This gives us the
option of making a codesize/runtime cost trade off.
* Added Attribute @_GenerateLayoutBytecode
This marks a type definition that should use generic bytecode based
value witnesses rather than generating the standard suite of
value witness functions. This should reduce the codesize of the binary
for a runtime interpretation of the bytecode cost.
* Statically link in implementation
Summary:
This creates a library to store the runtime functions in to deploy to
runtimes that do not implement bytecode layouts. Right now, that is
everything. Once these are added to the runtime itself, it can be used
to deploy to old runtimes.
* Implement Destroy at Runtime Using LayoutStrings
If GenerateLayoutBytecode is enabled, Create a layout string and use it
to call swift_generic_destroy
* Add Resilient type and Archetype Support for BytecodeLayouts
Add Resilient type and Archetype Support to Bytecode Layouts
* Implement Bytecode assign/init with copy/take
Implements swift_generic_initialize and swift_generic_assign to allow copying
types using bytecode based witnesses.
* Add EnumTag Support
* Add IRGen Bytecode Layouts Test
Added a test to ensure layouts are correct and getting generated
* Implement BytecodeLayouts ObjC retain/release
* Fix for Non static alignments in aligned groups
* Disable MultiEnums
MultiEnums currently have some correctness issues with non fixed multienum
types. Disabling them for now then going to attempt a correct implementation in
a follow up patch
* Fixes after merge
* More fixes
* Possible fix for native unowned
* Use TypeInfoeBasedTypeLayoutEntry for all scalars when ForceStructTypeLayouts is disabled
* Remove @_GenerateBytecodeLayout attribute
* Fix typelayout_based_value_witness.swift
Co-authored-by: Gwen Mittertreiner <gwenm@fb.com>
Co-authored-by: Gwen Mittertreiner <gwen.mittertreiner@gmail.com>
In preparation for moving to llvm's opaque pointer representation
replace getPointerElementType and CreateCall/CreateLoad/Store uses that
dependent on the address operand's pointer element type.
This means an `Address` carries the element type and we use
`FunctionPointer` in more places or read the function type off the
`llvm::Function`.
`PointerType::getElementType` has been removed entirely as part of the
opaque pointers migration. Update to `getPointerElementType` for now
until we've also migrated.
We used to only emit "destroy" and "initializeWithCopy". This commit adds support for emitting "assignWithCopy", "initializeWithTake" and "assignWithTake".