The prefab'ed value witness tables for reference storage types are a
premature optimization. Not all scenarios are covered, and those that
are "look suspect" according to John McCall.
The central thrust of this patch is to get these metadata initializations
off of `swift_once` and onto the metadata-request system where we can
properly detect and resolve dependencies. We do this by first introducing
runtime support for resolving metadata requests for "in-place"
initializations (committed previously) and then teaching IRGen to actually
generate code to use them (this patch).
A non-trivial amount of this patch is just renaming and refactoring some of
existing infrastructure that was being used for in-place initializations to
try to avoid unnecessary confusion.
The remaining cases that are still using `swift_once` resolution of
metadata initialization are:
- non-generic classes that can't statically fill their superclass or
have resilient internal layout
- foreign type metadata
Classes require more work because I'd like to switch at least the
resilient-superclass case over to using a pattern much more like what
we do with generic class instantiation. That is, I'd like in-place
initialization to be reserved for classes that actually don't need
relocation.
Foreign metadata should also be updated to the request/dependency scheme
before we declare ABI stability. I'm not sure why foreign metadata
would ever require a type to be resolved, but let's assume it's possible.
Fixes part of SR-7876.
Switch one entry point in the runtime (swift_getExistentialTypeMetadata)
to use ProtocolDescriptorRef rather than a protocol descriptor. Update
IRGen to produce ProtocolDescriptorRef instances for its calls, setting
the discriminator bit appropriately.
Within the runtime, verify that all instances of ProtocolDescriptorRef have
the right layout, i.e., the discriminator bit is set for @objc protocols
but not Swift protocols.
Otherwise, we might directly use uninitialized metadata, because we think
the type has a fixed size, even if it was defined in a different module
built with resilience.
Fixes <rdar://problem/40034143>, for real this time.
More groundwork for protocols with superclass constraints.
In several places we need to distinguish between existential
types that have a superclass term (MyClass & Proto) and
existential types containing a protocol with a superclass
constraint.
This is similar to how I can write 'AnyObject & Proto', or
write 'Proto1 & Proto2' where Proto1 has an ': AnyObject'
in its inheritance clause.
Note that some of the usages will be revisited later as
I do more refactoring and testing. This is just a first pass.
Because the runtime is compacted into the standard library, functions
which are normally imported are actually local definitions. Use module
level named metadata to identify the module as being the swift standard
library. Refactor the condition slightly to improve code readability.
This addresses SR-7107!
This work-around is no longer needed now that the full fix landed in
https://github.com/apple/swift/pull/16615. The argument is left with a warning
to help with migration between compilers with the work-around and compilers with
the full fix (see also rdar://problem/40502379).
Fixes rdar://problem/40476573.
IRGen can introduce calls to type metadata accessors for types that
should not be visible to the current translate, which can manifest in
linker errors within a module (for references to private types when
whole module optimization is disabled) or across modules (for
references to private/internal types in another module). Introduce a
new compiler flag `-emit-public-type-metadata-accessors` that emits
all type metadata accessors with public linkage, to work around the
problem in affected projects. This flag is intended to go away once we
have a proper solution.
This bug has been around in Swift "forever", but compiling the
overlays using -enable-resilience has exacerbated the problem and
caused regressions. This is a short-term fix to
rdar://problem/40229755 while we work on the correct long-term fix.
The TypeDecoder doesn't support the new box mangling yet and instead
just decodes it as Builtin.NativeObject, but that's OK because the
Remote Mirrors lowered the old box mangling as Builtin.NativeObject
anyway.
I was going to put this off for awhile, but it turns out that a lot of
my testcases are enums with multi-payload cases, which we currently
compile as tuples, so they were all still hanging until this patch.
Most of the work of this patch is just propagating metadata states
throughout the system, especially local-type-data caching and
metadata-path resolution. It took a few design revisions to get both
DynamicMetadataRequest and MetadataResponse to a shape that felt
right and seemed to make everything easier.
The design is laid out pretty clearly (I hope) in the comments on
DynamicMetadataRequest and MetadataResponse, so I'm not going to
belabor it again here. Instead, I'll list out the work that's still
outstanding:
- I'm sure there are places we're asking for complete metadata where
we could be asking for something weaker.
- I need to actually test the runtime behavior to verify that it's
breaking the cycles it's supposed to, instead of just not regressing
anything else.
- I need to add something to the runtime to actually force all the
generic arguments of a generic type to be complete before reporting
completion. I think we can get away with this for now because all
existing types construct themselves completely on the first request,
but there might be a race condition there if another asks for the
type argument, gets an abstract metadata, and constructs a type with
it without ever needing it to be completed.
- Non-generic resilient types need to be switched over to an IRGen
pattern that supports initialization suspension.
- We should probably space out the MetadataStates so that there's some
space between Abstract and Complete.
- The runtime just calmly sits there, never making progress and
permanently blocking any waiting threads, if you actually form an
unresolvable metadata dependency cycle. It is possible to set up such
a thing in a way that Sema can't diagnose, and we should detect it at
runtime. I've set up some infrastructure so that it should be
straightforward to diagnose this, but I haven't actually implemented
the diagnostic yet.
- It's not clear to me that swift_checkMetadataState is really cheap
enough that it doesn't make sense to use a cache for type-fulfilled
metadata in associated type access functions. Fortunately this is not
ABI-affecting, so we can evaluate it anytime.
- Type layout really seems like a lot of code now that we sometimes
need to call swift_checkMetadataState for generic arguments. Maybe
we can have the runtime do this by marking low bits or something, so
that a TypeLayoutRef is actually either (1) a TypeLayout, (2) a known
layout-complete metadata, or (3) a metadata of unknown state. We could
do that later with a flag, but we'll need to at least future-proof by
allowing the runtime functions to return a MetadataDependency.
I de-templated MetadataState and MetadataRequest because we weren't
relying on the template and because using the template was causing
conversion problems due to the inability to directly template an enum
in C++.
Abstract type/heap metadata access goes into MetadataRequest.
Metadata access starting from a heap object goes into GenHeap.
Accessing various components of class metadata goes into GenClass
or MetadataLayout.
This includes global generic and non-generic global access
functions, protocol associated type access functions,
swift_getGenericMetadata, and generic type completion functions.
The main part of this change is that the functions now need to take
a MetadataRequest and return a MetadataResponse, which is capable
of expressing that the request can fail. The state of the returned
metadata is reported as an second, independent return value; this
allows the caller to easily check the possibility of failure without
having to mask it out from the returned metadata pointer, as well
as allowing it to be easily ignored.
Also, change metadata access functions to use swiftcc to ensure that
this return value is indeed returned in two separate registers.
Also, change protocol associated conformance access functions to use
swiftcc. This isn't really related, but for some reason it snuck in.
Since it's clearly the right thing to do, and since I really didn't
want to retroactively tease that back out from all the rest of the
test changes, I've left it in.
Also, change generic metadata access functions to either pass all
the generic arguments directly or pass them all indirectly. I don't
know how we ended up with the hybrid approach. I needed to change all
the code-generation and calls here anyway in order to pass the request
parameter, and I figured I might as well change the ABI to something
sensible.