* initial changes
* Add tests, undo unnecessary changes.
* Fixing up computed properties accessors and adding tests for getters.
* Adding nested type testcase
* Fixing error message for when accessor is referenced but not acutally found.
* Cleanup.
- Improve diagnostic message.
- Clean up code and tests.
- Delete unrelated nested type `@derivative` attribute tests.
* Temporarily disable class subscript setter derivative registration test.
Blocked by SR-13096.
* Adding libsyntax integration and fixing up an error message.
* Added a helper function for checking if the next token is an accessor label.
* Update utils/gyb_syntax_support/AttributeNodes.py
Co-authored-by: Dan Zheng <danielzheng@google.com>
* Update lib/Parse/ParseDecl.cpp
Co-authored-by: Dan Zheng <danielzheng@google.com>
* Add end-to-end derivative registration tests.
* NFC: run `git clang-format`.
* NFC: clean up formatting.
Re-apply `git clang-format`.
* Clarify parsing ambiguity FIXME comments.
* Adding couple of more testcases and fixing up error message for when accessor is not found on functions resolved.
* Update lib/Sema/TypeCheckAttr.cpp
Co-authored-by: Dan Zheng <danielzheng@google.com>
Co-authored-by: Dan Zheng <danielzheng@google.com>
A previous commit inadvertently changed the
logic such that the member hash of an extension
body would be set to a partial interface hash.
Luckily this shouldn't have caused any behavioural
change as the interface hash itself would have
been left unaffected.
This commit makes sure we preserve the original
behaviour where if we don't have the body tokens
hashed separately, we give the body hash a default
constructed MD5.
Noticed by inspection.
Currently when parsing a SourceFile, the parser
gets handed pointers so that it can write the
interface hash and collected tokens directly into
the file. It can also call `setSyntaxRoot` at
the end of parsing to set the syntax tree.
In preparation for the removal of
`performParseOnly`, this commit formalizes these
values as outputs of `ParseSourceFileRequest`,
ensuring that the file gets parsed when the
interface hash, collected tokens, or syntax tree
is queried.
Previously it was backtracking for the duration of the whole property body which was preventing re-use of previously parsed nodes for incremental re-parsing.
Annotate the covered switches with `llvm_unreachable` to avoid the MSVC
warning which does not recognise the covered switches. This allows us
to avoid a spew of warnings.
Because we were previously performing SIL parsing
during `performSema`, we were relying on the
pipeline being stopped before reaching the SIL
pipeline passes.
However under a lazy evaluation model, we can't
rely on that. Instead, just return an empty
SILModule if we encounter a parsing error.
that allows arbitrary `label: {}` suffixes after an initial
unlabeled closure.
Type-checking is not yet correct, as well as code-completion
and other kinds of tooling.
Accept trailing closures in following form:
```swift
foo {
<label-1>: { ... }
<label-2>: { ... }
...
<label-N>: { ... }
}
```
Consider each labeled block to be a regular argument to a call or subscript,
so the result of parser looks like this:
```swift
foo(<label-1>: { ... }, ..., <label-N>: { ... })
```
Note that in this example parens surrounding parameter list are implicit
and for the cases when they are given by the user e.g.
```swift
foo(bar) {
<label-1>: { ... }
...
}
```
location of `)` is changed to a location of `}` to make sure that call
"covers" all of the transformed arguments and parser result would look
like this:
```swift
foo(bar,
<label-1>: { ... }
)
```
Resolves: rdar://problem/59203764
Also extend returned object from simplify being an expression to
`TrailingClosure` which has a label, label's source location and
associated closure expression.
Store an array of Located<Identifier> instead of
an array of Identifiers and SourceLocs on
OperatorDecl. This allows us to cleanup
OperatorPrecedenceGroupRequest a little.
There doesn't seem to be any reason to delay this
diagnostic until after type-checking has finished
any more, so run it along with the rest of
attribute checking.
If there's expected signature after the code completion.
For example:
func <HERE>(arg: Int) {}
This is clearly modifying the function name. We should not perform any
completion including override completion.
rdar://problem/58378950
This meant we weren't producing sema diagnostics for the case, and it didn’t
get full syntactic/semantic highlighting or indentation.
enum CasesWithMissingElement {
case a(Int, String),
case b(Int, String),
}
Resolves rdar://problem/61476844
The client code doesn't actually call into these specialized functions even
though they have public linkage. This could lead to TBD verification failure
shown in rdar://44777994.
This patch also warns users' codebase when `export: true` is specified.
Type erasure requires a circular construction by its very nature:
@_typeEraser(AnyProto)
protocol Proto { /**/ }
public struct AnyProto : Proto {}
If we eagerly resolve AnyProto, the chain of resolution steps that
deserialization must make goes a little something like this:
Lookup(Proto)
-> Deserialize(@_typeEraser(AnyProto))
-> Lookup(AnyProto)
-> DeserializeInheritedStuff(AnyProto)
-> Lookup(Proto)
This cycle could be broken if the order of incremental inputs was
such that we had already cached the lookup of Proto.
Resolve this cycle in any case by suspending the deserialization of the
type eraser until the point it's demanded by adding
ResolveTypeEraserTypeRequest.
rdar://61270195
Remove logic for parsing and diagnosing `jvp:` and `vjp:` arguments for
`@differentiable` attribute. No logic remains for handling those arguments.
Follow-up to TF-1001.
Delete `@differentiable` attribute `jvp:` and `vjp:` arguments for derivative
registration. `@derivative` attribute is now the canonical way to register
derivatives.
Resolves TF-1001.
We were always dropping the error status when returning from parseExprImpl. We
were also incorrectly keeping error status after recovering by finding the
right close token in parseList. This change fixes both, and also updates a few
callers of parseList that assumed when they reported a failure parsing an
element the list as a whole would get error status, which isn't true due to
recovery.
In order to allow this, I've had to rework the syntax of substituted function types; what was previously spelled `<T> in () -> T for <X>` is now spelled `@substituted <T> () -> T for <X>`. I think this is a nice improvement for readability, but it did require me to churn a lot of test cases.
Distinguishing the substitutions has two chief advantages over the existing representation. First, the semantics seem quite a bit clearer at use points; the `implicit` bit was very subtle and not always obvious how to use. More importantly, it allows the expression of generic function types that must satisfy a particular generic abstraction pattern, which was otherwise impossible to express.
As an example of the latter, consider the following protocol conformance:
```
protocol P { func foo() }
struct A<T> : P { func foo() {} }
```
The lowered signature of `P.foo` is `<Self: P> (@in_guaranteed Self) -> ()`. Without this change, the lowered signature of `A.foo`'s witness would be `<T> (@in_guaranteed A<T>) -> ()`, which does not preserve information about the conformance substitution in any useful way. With this change, the lowered signature of this witness could be `<T> @substituted <Self: P> (@in_guaranteed Self) -> () for <A<T>>`, which nicely preserves the exact substitutions which relate the witness to the requirement.
When we adopt this, it will both obviate the need for the special witness-table conformance field in SILFunctionType and make it far simpler for the SILOptimizer to devirtualize witness methods. This patch does not actually take that step, however; it merely makes it possible to do so.
As another piece of unfinished business, while `SILFunctionType::substGenericArgs()` conceptually ought to simply set the given substitutions as the invocation substitutions, that would disturb a number of places that expect that method to produce an unsubstituted type. This patch only set invocation arguments when the generic type is a substituted type, which we currently never produce in type-lowering.
My plan is to start by producing substituted function types for accessors. Accessors are an important case because the coroutine continuation function is essentially an implicit component of the function type which the current substitution rules simply erase the intended abstraction of. They're also used in narrower ways that should exercise less of the optimizer.