This instruction can be used to disable ownership verification on it's result and
will be allowed only in raw SIL.
Sometimes SILGen can produce invalid ownership SSA, that cannot be resolved until
mandatory passes run. We have a few ways to piecewise disable verification.
With unchecked_ownership instruction we can provide a uniform way to disable ownership
verification for a value.
This instruction converts Builtin.ImplicitActor to Optional<any Actor>. In the
process of doing so, it masks out the bits we may have stolen from the witness
table pointer of Builtin.ImplicitActor. The bits that we mask out are the bottom
two bits of the top nibble of the TBI space on platforms that support TBI (that
is bit 60,61 on arm64). On platforms that do not support TBI, we just use the
bottom two tagged pointer bits (0,1).
By using an instruction, we avoid having to represent the bitmasking that we are
performing at the SIL level and can instead just make the emission of the
bitmasking an IRGen detail. It also allows us to move detection if we are
compiling for AArch64 to be an IRGen flag instead of a LangOpts flag.
The instruction is a guaranteed forwarding instruction since we want to treat
its result as a borrowed projection from the Builtin.ImplicitActor.
Introduce copy_value + mark_unresolved_non_copyable_value + begin_borrow at the return value of
borrow accessor apply to drive move-only diagnostics.
Also strip the copy_value + mark_unresolved_non_copyable_value + begin_borrow trio in a few places, since
they create an artificial scope out of which we cannot return values in a borrow accessor
without resorting to unsafe SIL operations currently.
Borrow accessor diagnostics allow stripping these instructions safely in the following places:
- return value of a borrow accessor
- self argument reference in the borrow accessor return expression and borrow accessor apply
Based on what I see from OwnershipModelEliminator,
`%x = load [copy] %y` can turn into a plain load
followed by a retain of the loaded value.
See `NonTrivialLoadableTypeLowering::emitLoad`
functions to compute them directly without a TypeLowering object, and
change a lot of getTypeLowering call sites to just use that.
There is one subtle change here that I think is okay: SILBuilder used to
use different TypeExpansionContexts when inserting into a global:
- getTypeLowering() always used a minimal context when inserting into
a global
- getTypeExpansionContext() always returned a maximal context for the
module scope
The latter seems more correct, as AFAIK global initializers are never
inlinable. If they are, we probably need to configure the builder with
an actual context properly rather than making global assumptions.
This is incremental progress towards computing this for most types
without a TypeLowering, and hopefully eventually removing TL entirely.
It derives the address of the first element of a vector, i.e. a `Builtin.FixedArray`, from the address of the vector itself.
Addresses of other vector elements can then be derived with `index_addr`.
The problem with `is_escaping_closure` was that it didn't consume its operand and therefore reference count checks were unreliable.
For example, copy-propagation could break it.
As this instruction was always used together with an immediately following `destroy_value` of the closure, it makes sense to combine both into a `destroy_not_escaped_closure`.
It
1. checks the reference count and returns true if it is 1
2. consumes and destroys the operand
The reason why I am doing this is that in certain cases the AST captures indices
will never actually line up with partial apply capture indices since we seem to
"smush" together closures and locally defined functions.
NOTE: The reason for the really small amount of test changes is that this change
does not change the actual output by design. The only cases I had to change were
a case where we began to emit a better diagnostic and also where I added code
coverage around _ and let _ since those require ignored_use to be implemented so
that they would be diagnosed (previously we just did not emit anything so we
couldn't emit the diagnostic at the SIL level).
rdar://142661388
This is used for synthetic uses like _ = x that do not act as a true use but
instead only suppress unused variable warnings. This patch just adds the
instruction.
Eventually, we can use it to move the unused variable warning from Sema to SIL
slimmming the type checker down a little bit... but for now I am using it so
that other diagnostic passes can have a SIL instruction (with SIL location) so
that we can emit diagnostics on code like _ = x. Today we just do not emit
anything at all for that case so a diagnostic SIL pass would not see any
instruction that it could emit a diagnostic upon. In the next patch of this
series, I am going to add SILGen support to do that.
I am adding this instruction to express artificially that two non-Sendable
values should be part of the same region. It is meant to be used in cases where
due to unsafe code using Sendable, we stop propagating a non-Sendable dependency
that needs to be made in the same region of a use of said Sendable value. I
included an example in ./docs/SIL.rst of where this comes up with @out results
of continuations.
In Embedded Swift, witness method lookup is done from specialized witness tables.
For this to work, the type of witness_method must be specialized as well.
Otherwise the method call would be done with wrong parameter conventions (indirect instead of direct).
For now this will only be used for HopToMainActorIfNeeded thunks. I am creating
this now since in the past there has only been one option for creating
thunks... to create the thunk in SILGen using SILGenThunk. This code is hard to
test and there is a lot of it. By using an instruction here we get a few benefits:
1. We decouple SILGen from needing to generate new kinds of thunks. This means
that SILGenThunk does not need to expand to handle more thunks.
2. All thunks implemented via ThunkInst will be easy to test in a decoupled way
with SIL tests.
3. Even though this stabilizes the patient, we still have many thunks in SILGen
and various parts of the compiler. Over time, we can swap to this model,
allowing us to hopefully eventually delete SILGenThunk.
Motivated by need for protocol-based dynamic dispatch, which hasn't been possible in Embedded Swift due to a full ban on existentials. This lifts that restriction but only for class-bound existentials: Class-bound existentials are already (even in desktop Swift) much more lightweight than full existentials, as they don't need type metadata, their containers are typically 2 words only (reference + wtable pointer), don't incur copies (only retains+releases).
Included in this PR:
[x] Non-generic class-bound existentials, executable tests for those.
[x] Extension methods on protocols and using those from a class-bound existential.
[x] RuntimeEffects now differentiate between Existential and ExistentialClassBound.
[x] PerformanceDiagnostics don't flag ExistentialClassBound in Embedded Swift.
[x] WTables are generated in IRGen when needed.
Left for follow-up PRs:
[ ] Generic classes support
Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
It indicates that the value's lifetime continues to at least this point.
The boundary formed by all consuming uses together with these
instructions will encompass all uses of the value.
An initializing store is not a copy and therefore doesn't perform ref counting operations
Fixes a false performance error when using non-copyable types.
https://github.com/apple/swift/issues/73582
LLVM is presumably moving towards `std::string_view` -
`StringRef::startswith` is deprecated on tip. `SmallString::startswith`
was just renamed there (maybe with some small deprecation inbetween, but
if so, we've missed it).
The `SmallString::startswith` references were moved to
`.str().starts_with()`, rather than adding the `starts_with` on
`stable/20230725` as we only had a few of them. Open to switching that
over if anyone feels strongly though.
Not de-virtualized value type deinits can require metatype in case the deinit needs to be called via the value witness table.
Usually this does not happen because deinits are mandatory de-virtualized. But it can show up if e.g. wrong build options are used.
rdar://122651706
* `alloc_vector`: allocates an uninitialized vector of elements on the stack or in a statically initialized global
* `vector`: creates an initialized vector in a statically initialized global
I also included changes to the rest of the SIL optimizer pipeline to ensure that
the part of the optimizer pipeline before we lower tuple_addr_constructor (which
is right after we run TransferNonSendable) work as before.
The reason why I am doing this is that this ensures that diagnostic passes can
tell the difference in between:
```
x = (a, b, c)
```
and
```
x.0 = a
x.1 = b
x.2 = c
```
This is important for things like TransferNonSendable where assigning over the
entire tuple element is treated differently from if one were to initialize it in
pieces using projections.
rdar://117880194