when two objc async functions are composed with each other,
i.e., f(g()), then the clean-ups for g() would get emitted
at an unexpected time, namely, during the suspension for
the call to f(). This means that using a clean-up to emit
the executor-hop breadcrumb was incorrect. The hop could
appear between a get_async continuation and its matching
await_continuation, which is an unsupported nested suspension.
This commit fixes that by removing the use of the breadcrumb
clean-up in favor of providing that breadcrumb directly to
the result plan, so that it may be emitted later on when the
result plan sees fit.
Fixes rdar://91502776
This reverts commit afd26d3974 to solve
a critical miscompile caused by a hop_to_executor appearing between
a get_continuation and await_continuation instruction in SIL.
A reimplementation of SR-15703 will be forthcoming.
Fixes rdar://91502776
SE-0338 changed the execution of non-actor async functions
so that they always hop to the generic executor, but some
functions need a way to suppress this so that they inherit
the caller's executor.
The right way to implement this is to have the caller pass
down the target executor in some reliable way and then
switch to it in all the appropriate places in the caller.
We might reasonably be able to build this on top of isolated
parameters, using some sort of default argument, or we might
need a wholly novel mechanism.
But those things are all ABI-breaking absent some sort of
guarantee about switching that we probably don't want to make,
and unfortunately we have functions in the library which we
need to export that need to inherit executors. So in the
short term, we need some unsafe way of getting back to the
previous behavior.
For `async` function types, an actor constraint can be enforced by the callee by hopping executors,
unlike with `sync` functions, so doesn't need to influence the outward type of the function.
rdar://76248452
Tasks shouldn't normally hog the actor context indefinitely after making a call that's bound to
that actor, since that prevents the actor from potentially taking on other jobs it needs to
be able to address. Set up SILGen so that it saves the current executor (using a new runtime
entry point) and hops back to it after every actor call, not only ones where the caller context
is also actor-bound.
The added executor hopping here also exposed a bug in the runtime implementation while processing
DefaultActor jobs, where if an actor job returned to the processing loop having already yielded
the thread back to a generic executor, we would still attempt to make the actor give up the thread
again, corrupting its state.
rdar://71905765