We were creating the JumpDests too early, so lowering a 'break' or 'continue'
statement would perform cleanups that were recorded while evaluating the
pack expansion expression, which would cause SIL verifier errors and
runtime crashes.
- Fixes https://github.com/swiftlang/swift/issues/78598
- Fixes rdar://131847933
This is necessary because we need to model its stack-allocation
behavior, although I'm not yet doing that in this patch because
StackNesting first needs to be taught to not try to move the
deallocation.
I'm not convinced that `async let` *should* be doing a stack allocation,
but it undoubtedly *is* doing a stack allocation, and until we have an
alternative to that, we will need to model it properly.
Specifically, when TBI is available we use the bottom two bits of the top nibble
(bits 60,61). On platforms without TBI, we use the bottom two tagged pointer
bits (bits 0, 1).
rdar://156525771
NOTE: We are not performing any bitmasking at all now. This is so that we can
transition the code base/tests to expect Builtin.ImplicitActor instead
of Optional<any Actor>.
NOTE: The actual test changes are in the next commit. I did this to make it
easier to review the changes.
This should not have any user visible changes.
It used to be done with a library intrinsic which returns the array and an element address pointer.
A `mark_dependence` was used to "connect" the two results.
But this resulted in completely wrong OSSA after inlining.
It just didn't get caught be the verifier because the SIL was obfuscated by address-pointer conversions.
Now we don't use the second result (= the element address) of the intrinsic but generate a correct borrow scope from the first (= array) result. Within that borrow scope we project out the element address with a `ref_tail_addr` instruction.
This relies on knowledge of the internal Array data structures. However those data structures are baked into the ABI since a long time and will not change.
Unowned result conventions do not work well with OSSA. Retain the result
right after the call when we come out of OSSA so we can treat the
returned value as if it was owned when we do optimizations.
This fix a miscompilation due to the DestroyAddrHoisting pass hoisting
destroys above copies with unowned sources. When the destroyed object
was the last reference to the pointed memory the copy is happening too
late resulting in a use after free.
rdar://160462854
Changes in https://github.com/swiftlang/swift/pull/81370 addressed a
number of issues with isolated default argument handling. However, there
seemed to still be a problem when dealing with isolated default
arguments of instance/static methods under the following conditions:
- The method contained an isolated default parameter
- The method contained a defaulted parameter that expanded to 0 or >1
values
- Said parameter was followed by another defaulted parameter
The attempted fix here was to adjust the isolated default argument
iteration bookkeeping.
Borrow accessor result can sometimes be generated from a local borrow and
returning the result produced within the local borrow scope will cause ownership errors.
We have to introduce new SIL semantics to make this possible.
Until then use a pair of unchecked_ownership_conversion instructions to silence the ownership errors.
We encounter this when we have:
Address-only self and @guaranteed result
Loadable self and @guaranteed result derived from an unsafe pointer stored property
This change also updates the result convention of borrow accessors with loadable result types
and indirect self argument type.
Under library evolution, loadable self arguments are passed as @in_guaranteed.
SILGen generates load_borrow for such self arguments proactively.
load_borrow creates an artifical scope and returning values produced within this scope
will be illegal without resorting to unsafe operations today.
This change avoids creating a load_borrow proactively for borrow accessors.
Introduce copy_value + mark_unresolved_non_copyable_value + begin_borrow at the return value of
borrow accessor apply to drive move-only diagnostics.
Also strip the copy_value + mark_unresolved_non_copyable_value + begin_borrow trio in a few places, since
they create an artificial scope out of which we cannot return values in a borrow accessor
without resorting to unsafe SIL operations currently.
Borrow accessor diagnostics allow stripping these instructions safely in the following places:
- return value of a borrow accessor
- self argument reference in the borrow accessor return expression and borrow accessor apply
ResultConvention::Guaranteed will be used by borrow accessors when the storage type can be returned by value.
ResultConvention::GuaranteedAddress will be used by mutate accessors and borrow accessors when the storage type
cannot be returned by value.
This PR is another attempt at landing #76903. The changes compared to
the original PR:
* Instead of increasing the size of SILDeclRef, store the necessary type
information in a side channel using withClosureTypeInfo.
* Rely on SGFContext to get the right ClangType
* Extend BridgingConversion with an AbstractionPattern to store the
original clang type.
* The PR above introduced a crash during indexing system modules that
references foreign types coming from modules imported as
implementation only. These entities are implementation details so they
do not need to be included during serialization. This PR adds a test
and adds logic to exclude such clang types in the serialization
process.
rdar://131321096&141786724
- Calls to variadic-generic protocol requirements weren't applying
substitutions properly, so expansion-sensitive types in the callee
signature weren't pairing properly with their expansions in the
caller.
- emitPackTransform had an over-destroy if the transformation function
actually emitted into the temporary element directly.
- There were some MV ownership assertions that were wrong, which
revealed that the corresponding code really didn't handle consuming/
borrowing mismatches properly at all.
- We were completely mishandled consuming packs.
Fixes#81002, #80995, and #81600.
functions to compute them directly without a TypeLowering object, and
change a lot of getTypeLowering call sites to just use that.
There is one subtle change here that I think is okay: SILBuilder used to
use different TypeExpansionContexts when inserting into a global:
- getTypeLowering() always used a minimal context when inserting into
a global
- getTypeExpansionContext() always returned a maximal context for the
module scope
The latter seems more correct, as AFAIK global initializers are never
inlinable. If they are, we probably need to configure the builder with
an actual context properly rather than making global assumptions.
This is incremental progress towards computing this for most types
without a TypeLowering, and hopefully eventually removing TL entirely.
Specifically, we were not inserting the implicit isolated parameter and were not
setting up the actor prologue. To keep this specific to nonisolated(nonsending)
code, I only setup the actor prologue if we know that we have something that is
nonisolated(nonsending).
I also ported some async initializer tests to run with/without
nonisolated(nonsending) just to increase code coverage.
rdar://156919493
This was behind a feature flag. Unfortunately, this flag is viral, if
the module we consume and the consuming module had inconsistent settings
that could lead to deserialization errors. To avoid this, we need to
move this out of the flag and apply the attribute unconditionally. This
PR moves addressable-self out of the experimental flag and addresses a
couple of the fallouts:
* This attribute should not be applied to types with reference semantics
like foreign reference types or Obj-C classes.
* There was a SILGen assertion failure which is solved by pealing off
the @lvalue specifier from the type behind a load expression.
This fixes part of rdar://155971658
A call to a `@preconcurrency` function goes through a function conversion
that removes `Sendable` from existentials among other things. Implement
support for this by bitcasting indirect return slots whose type differs
from the formal indirect return type in concurrency markings only.
Fixes rdar://154240007
When accessing stored properties out of an addressable variable or parameter
binding, the stored property's address inside the addressable storage of the
aggregate is itself addressable. Also, if a computed property is implemented
using an addressor, treat that as a sign that the returned address should be
used as addressable storage as well. rdar://152280207
Specifically, I taught SILGen how to emit an AST like the following:
```
(force_value_expr implicit type="nonisolated(nonsending) (Date?) async -> Void" implicit_iuo_unwrap
(open_existential_expr implicit type="(nonisolated(nonsending) (Date?) async -> Void)?"
(opaque_value_expr implicit type="AnyObject")
(declref_expr type="AnyObject" decl="test.(file).repro().anyObject@test.swift:6:7" function_ref=unapplied)
(optional_evaluation_expr type="(nonisolated(nonsending) (Date?) async -> Void)?"
(inject_into_optional type="(nonisolated(nonsending) (Date?) async -> Void)?"
(function_conversion_expr type="nonisolated(nonsending) (Date?) async -> Void"
(bind_optional_expr type="(Date?) async -> Void" depth=0
(dynamic_member_ref_expr type="((Date?) async -> Void)?" decl="__ObjC.(file).Foo.start(at:)"
(opaque_value_expr type="AnyObject"))))))))
```
Since we are emitting an objc async function, there isn't an extra implicit
parameter like if we were using a swift async function. So, I just reused code
that was already used locally to look through these sorts of conversions. I
just had to add to that code support for conversions that add
nonisolated(nonsending). Previously it only supported looking through global
actor conversions.
rdar://152596823
This replaces the oddly-named mapIntoTypeExpansionContext() method
on SubstitutionMap itself in favor of a global function, just like
the ones that take Type and ProtocolConformanceRef.
This is an extension of a similar problem that I had fixed earlier where due to
the usage of intermediate Sendable types we do not propagate regions correctly.
The previous issue I fixed was that we were not properly tieing the result of a
foreign async completion handler to the block storage since we used an
intervening UnsafeContinuation (which is Sendable) to propagate the result into
the block storage. I fixed this by changing SILGen to insert a
merge_isolation_region that explicitly ties the result to the block storage.
This new issue is that the block that we create and then pass as the completion
handler is an @Sendable block. Thus when we call the actual objc_method, the
block storage and self are not viewed as being in the same region. In this PR, I
change it so that we add a merge_isolation_region from self onto the block
storage.
The end result of this is that we have that self, the result of the call, and
the block storage are all in the same region meaning that we properly diagnose
that returning an NSObject from the imported Objective-C function is task
isolated and thus we cannot return it as a sending result.
rdar://131422332
Don't bind references to storage to use (new ABI) coroutine accessors
unless they're guaranteed to be available. For example, when building
against a resilient module that has coroutine accessors, they can only
be used if the deployment target is >= the version of Swift that
includes the feature.
rdar://148783895
Now that coroutine kind (and consequently ABI) for the accessors is
keyed off a SIL option, it's no longer possible to read whether a given
SILFunction arose from a read/modify coroutine just by checking its
coroutine kind. Regardless of ABI, read/modify coroutines may only
unwind (i.e. are only permitted not to "run to completion") if the
relevant experimental (soon to be deleted) feature is enabled.