The bridging function that we are calling here takes in the value to be bridged
at +0. We were storing that value via a normal store. This looks like a double
consume since we were destroying the value later. Now we use a store_borrow.
rdar://29791263
Support for @noescape SILFunctionTypes.
These are the underlying SIL changes necessary to implement the new
closure capture ABI.
Note: This includes a change to function name mangling that
primarily affects reabstraction thunks.
The new ABI will allow stack allocation of non-escaping closures as a
simple optimization.
The new ABI, and the stack allocation optimization, also require
closure context to be @guaranteed. That will be implemented as the
next step.
Many SIL passes pattern match partial_apply sequences. These all
needed to be fixed to handle the convert_function that SILGen now
emits. The conversion is now needed whenever a function declaration,
which has an escaping type, is passed into a @NoEscape argument.
In addition to supporting new SIL patterns, some optimizations like
inlining and SIL combine are now stronger which could perturb some
benchmark results.
These underlying SIL changes should be merged now to avoid conflicting
with other work. Minor benchmark discrepancies can be investigated as part of
the stack-allocation work.
* Add a noescape attribute to SILFunctionType.
And set this attribute correctly when lowering formal function types to SILFunctionTypes based on @escaping.
This will allow stack allocation of closures, and unblock a related ABI change.
* Flip the polarity on @noescape on SILFunctionType and clarify that
we don't default it.
* Emit withoutActuallyEscaping using a convert_function instruction.
It might be better to use a specialized instruction here, but I'll leave that up to Andy.
Andy: And I'll leave that to Arnold who is implementing SIL support for guaranteed ownership of thick function types.
* Fix SILGen and SIL Parsing.
* Fix the LoadableByAddress pass.
* Fix ClosureSpecializer.
* Fix performance inliner constant propagation.
* Fix the PartialApplyCombiner.
* Adjust SILFunctionType for thunks.
* Add mangling for @noescape/@escaping.
* Fix test cases for @noescape attribute, mangling, convert_function, etc.
* Fix exclusivity test cases.
* Fix AccessEnforcement.
* Fix SILCombine of convert_function -> apply.
* Fix ObjC bridging thunks.
* Various MandatoryInlining fixes.
* Fix SILCombine optimizeApplyOfConvertFunction.
* Fix more test cases after merging (again).
* Fix ClosureSpecializer. Hande convert_function cloning.
Be conservative when combining convert_function. Most of our code doesn't know
how to deal with function type mismatches yet.
* Fix MandatoryInlining.
Be conservative with function conversion. The inliner does not yet know how to
cast arguments or convert between throwing forms.
* Fix PartialApplyCombiner.
This replaces the '[volatile]' flag. Now, class_method and
super_method are only used for vtable dispatch.
The witness_method instruction is still overloaded for use
with both ObjC protocol requirements and Swift protocol
requirements; the next step is to make it only mean the
latter, also using objc_method for ObjC protocol calls.
This is in prepatation for splitting getAtUncurryLevel into one function that
returns the CalleeTypeInfo (which is needed early) and a later one that returns
a ManagedValue, which can occur later.
rdar://33358110
ground work for the syntactic bridging peephole.
- Pass source and dest formal types to the bridging routines in addition
to the dest lowered type. The dest lowered type is still necessary
in order to handle non-standard abstraction patterns for the dest type.
- Change bridging abstraction patterns to store bridged formal types
instead of the formal type.
- Improve how SIL type lowering deals with import-as-member patterns.
- Fix some AST bugs where inadequate information was being stored in
various expressions.
- Introduce the idea of a converting SGFContext and use it to regularize
the existing id-as-Any conversion peephole.
- Improve various places in SILGen to emit directly into contexts.
Previously we were storing a pointer to the non-yet blockified function and not
cleaning it up. This was safe since we were performing a copy_block on the block
and destroying the SSA value of the non-yet blockified function. This looks like
a double consume to the ownership verifier. To fix this, I changed the bridging
code to use a new entrypoint for storing on SILGenBuilder that just does the
right thing by forwarding the cleanup on the SSA value and transfering it to the
address. This means the address will be destroyed instead of the SSA value,
yielding proper ownership.
rdar://31880847
through a few places.
This patch should be NFC for existing patterns, but it's preparing for
using SILGen's built-in bridging capabilities for more things.
Only emit calls to Builtin.swift3ImplicitObjCEntrypoint() when we are
in Swift 4 mode with `-enable-swift3-objc-inference`, which is a
transitional state in which one is debugging the use of the
deprecated @objc entrypoints. Fixes rdar://problem/32122408.
NormalProtocolConformance has the only correct implementation of this
functionality. Instead, providing a safer getWitnessDecl() that
doesn't promise substitutions that are incorrect (and not actually
used by any clients).
When a method is dynamic, we always call through the Objective-C
runtime, which leads to a huge number of false positives. Suppress the
runtime calls here.
Introduce a new runtime entry point,
`swift_objc_swift3ImplicitObjCEntrypoint`, which is called from any
Objective-C method that was generated due to `@objc` inference rules
that were removed by SE-0160. Aside from being a central place where
users can set a breakpoint to catch when this occurs, this operation
provides logging capabilities that can be enabled by setting the
environment variable SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT:
SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT=0 (default): do not log
SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT=1: log failed messages
SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT=2: log failed messages with
backtrace
SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT=3: log failed messages with
backtrace and abort the process.
The log messages look something like:
***Swift runtime: entrypoint -[t.MyClass foo] generated by
implicit @objc inference is deprecated and will be removed in
Swift 4
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
This structure contains all of the type information that we use to build a
ResultPlanPtr. In a subsequent commit, I am going to move ResultPlanPtr creation
out of emitApply and place it before the creation of arguments. This is to
enable indirect result initializations to belong to the scope outside of any
argument based scopes.
Without this the lifetimes of the indirect result initializations and arguments
can not be separated without using hacks. There is no reason why we can't emit
the indirect result temporaries before we emit any arguments since they will
remain dormant until after the final apply/any future committed argument scopes
being popped.
rdar://30955427
A lot of files transitively include Expr.h, because it was
included from SILInstruction.h, SILLocation.h and SILDeclRef.h.
However in reality most of these files don't do anything
with Exprs, especially not anything in IRGen or the SILOptimizer.
Now we're down to 171 files in the frontend which depend on
Expr.h, which is still a lot but much better than before.
The reason that this is being done is that:
1. SILGenFunction is passed around all throughout SILGen, including in between
APIs some of which call the SILGenFunction variable SGF and others that call it
gen.
2. Thus when one is debugging code in SILGen, one wastes time figuring out what
the variable name of SILGenFunction is in the current frame.
I did not do this by hand. I did this by:
1. Grepping for "SILGenFunction &gen".
2. By hand inspecting that the match was truly a SILGenFunction &gen site.
3. If so, use libclang tooling to rename the variable to SGF.
So I did not update any use sites.
Change emitApplyOfLibraryIntrinsic() to take a SubstitutionMap,
and use the correct abstractions to build the map.
This gets rid of the last remaining uses of gatherAllSubstitutions()
in SIL.
ASTContext::getSpecializedConformance() already copies the
substitutions, so remove some AllocateCopy() calls.
Also, add a new overload taking a SubstitutionMap instead.
This allows removing some gatherAllSubstitutions() calls,
which have an allocation inside them.
Finally, remove the now-unused ModuleDecl parameter from
ProtocolConformance::subst() and make it public.
In the case where we already have a guaranteed value, the borrow operation will
just return the guaranteed manage value. Thus it is ok to always just perform
the borrow unconditionally.
rdar://29791263
This method maps interface types to archetypes, which in general
requires a module for performing conformance lookups, if mapping
a member type of a generic parameter which has been made concrete.
However, in practice the types we are mapping here are all canonical
with respect to the generic signature, because they came from
GenericSignature::getAllDependentTypes(), so we actually don't need
to do conformance lookups.
This allows some code to be simplified.
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.
new API called ManagedValue::unmanagedBorrow() for places where we were really trying to model
an exclusive borrow.
ManagedValue::unmanagedBorrow() is just the old implementation.
rdar://29791263
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
Most of this involved sprinkling ValueOwnershipKind::Owned in many places. In
some of these places, I am sure I was too cavalier and I expect some of them to
be trivial. The verifier will help me to track those down.
On the other hand, I do expect there to be some places where we are willing to
accept guaranteed+trivial or owned+trivial. In those cases, I am going to
provide an aggregate ValueOwnershipKind that will then tell SILArgument that it
should disambiguate using the type. This will eliminate the ackwardness from
such code.
I am going to use a verifier to fix such cases.
This commit also begins the serialization of ValueOwnershipKind of arguments,
but does not implement parsing of value ownership kinds. That and undef are the
last places that we still use ValueOwnershipKind::Any.
rdar://29791263
This is dead code and can be re-added if it is needed. Right now though there
really isnt a ValueOwnershipKind that corresponds to deallocating and I do not
want to add a new ValueOwnershipKind for dead code.