Convert a bunch of places where we're dumping to stderr and calling
`abort` over to using `ABORT` such that the message gets printed to
the pretty stack trace. This ensures it gets picked up by
CrashReporter.
* move the "SILCombine passes" into a separate file `Simplifications.def` which lives in the SILCombiner directory
* group passes by kind
* rename PASS -> LEGACY_PASS and add a comment to make clear that new passes should be implemented in Swift
NFC
Introduce two modes of bridging:
* inline mode: this is basically how it worked so far. Using full C++ interop which allows bridging functions to be inlined.
* pure mode: bridging functions are not inlined but compiled in a cpp file. This allows to reduce the C++ interop requirements to a minimum. No std/llvm/swift headers are imported.
This change requires a major refactoring of bridging sources. The implementation of bridging functions go to two separate files: SILBridgingImpl.h and OptimizerBridgingImpl.h.
Depending on the mode, those files are either included in the corresponding header files (inline mode), or included in the c++ file (pure mode).
The mode can be selected with the BRIDGING_MODE cmake variable. By default it is set to the inline mode (= existing behavior). The pure mode is only selected in certain configurations to work around C++ interop issues:
* In debug builds, to workaround a problem with LLDB's `po` command (rdar://115770255).
* On windows to workaround a build problem.
Add a separate 'verifyOwnership()' entry point so it's possible
to check OSSA lifetimes at various points.
Move SILGenCleanup into a SILGen pass pipeline.
After SILGen, verify incomplete OSSA.
After SILGenCleanup, verify ownership.
* split the `PassContext` into multiple protocols and structs: `Context`, `MutatingContext`, `FunctionPassContext` and `SimplifyContext`
* change how instruction passes work: implement the `simplify` function in conformance to `SILCombineSimplifyable`
* add a mechanism to add a callback for inserted instructions
To add a module pass in `Passes.def` use the new `SWIFT_MODULE_PASS` macro.
On the swift side, create a `ModulePass`.
It’s run function receives a `ModulePassContext`, which provides access to all functions of a module.
But it doesn't provide any APIs to modify functions.
In order to modify a function, a module pass must use `ModulePassContext.transform(function:)`.
And a few other small related changes:
* remove libswiftPassInvocation from SILInstructionWorklist (because it's not needed)
* replace start/finishPassRun with start/finishFunction/InstructionPassRun
NFC
With the macro SWIFT_FUNCTION_PASS a new libswift function pass can be defined in Passes.def.
The SWIFT_FUNCTION_PASS_WITH_LEGACY is similar, but it allows to keep an original C++ “legacy” implementation of the pass, which is used if the compiler is not built with libswift.
Don't create a separate pass manager for those passes, just let them run at the beginning of the performance pipeline.
Regarding generated code this is a NFC.
This change fixes a problem with pass-bisecting (for debugging). Having two instances of the pass manager can cause troubles with bisecting, because -sil-opt-pass-count affects both pass managers at the same time.
Add ExecuteSILPipelineRequest which executes a
pipeline plan on a given SIL (and possibly IRGen)
module. This serves as a top-level request for
the SILOptimizer that we'll be able to hang
dependencies off.
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
This normalizes the creation of pass pipelines by ensuring that all pass
pipelines take a SILOption instead of only some. It also makes it so that we do
not need to propagate options through various pipeline creation helpers.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
* rename "Name" to "Description" in the pass definition, because it's not really the pass name, but the description of a pass
* remove the getName() from Transforms (which actually returned the description of a pass)
* in debug printing, print the pass ID and not the pass description. It makes it easier to correlate the debug output to the actual pass implementation.
* remove the iteration numbering in the pass manager, because we only run a single iteration anyway.
This commit is mostly refactoring.
*) Introduce a new OptimizationMode enum and use that in SILOptions and IRGenOptions
*) Allow the optimization mode also be specified for specific SILFunctions. This is not used in this commit yet and thus still a NFC.
Also, fixes a minor bug: we didn’t run mandatory IRGen passes for functions with @_semantics("optimize.sil.never")
At some point, pass definitions were heavily macro-ized. Pass
descriptive names were added in two places. This is not only redundant
but a source of confusion. You could waste a lot of time grepping for
the wrong string. I removed all the getName() overrides which, at
around 90 passes, was a fairly significant amount of code bloat.
Any pass that we want to be able to invoke by name from a tool
(sil-opt) or pipeline plan *should* have unique type name, enum value,
commend-line string, and name string. I removed a comment about the
various inliner passes that contradicted that.
Side note: We should be consistent with the policy that a pass is
identified by its type. We have a couple passes, LICM and CSE, which
currently violate that convention.
We also either remove or make private the addPass* functions on SILPassManager,
so the only way to execute passes via SILPassManager is by creating a
SILPassPipelinePlan. This beyond adding uniformity ensures that we always
resetAndRemoveTransformations properly after a pipeline is run.
This commit adds the functionality, but does not change SILPassManager to use
it. The reason why I am doing this is so I can implement sil-opt pass bisecting
functionality in python using a tool that dumps the current pass pipelines
out. This will ensure that even in the face of changes to the pass pipelines,
everything should just work.
This is a simple refactoring to make it really easy for me to rip out the pass
pipeline code into a real pass pipeline class that can be
serialized/deserialized. By serializing/deserializing the pass-pipeline
directly, it becomes very easy to write a bug-point like tool in python on top.
Additionally, it allows users who want to manipulate the pipeline by hand to be
able to easily dump out the normal pass pipeline without any work.
This is a hidden option. It should be used like: -assume-single-threaded
When this function is provided, the compiler assumes that the code will be executed in the single threaded mode. It then performs certain optimizations that can benefit from it, e.g. it marks as non-atomic all reference counting instructions in the user code being compiled.
Often times SILGen wants to hold onto values that have been copied. This causes
an issue, when due to Cleanups firing, SILBuilder inserts destroys and destroys
the copy that produced the value that SILGen held onto. This will then cause
SILGen to emit incorrect code.
There really is no reason to introduce such complexity into SILBuilder when a
small simple guaranteed pass can perform the same work. Thus the introduction of
this pass.
In a later commit, I am going to eliminate the SILBuilder entry points.
rdar://28685236
This is a NFC change, since verification still will be behind the flag. But this
will allow me to move copy_value, destroy_value in front of the
EnableSILOwnership flag and verify via SILGen that we are always using those
instructions.
rdar://28851920
Previously I was going to just set a flag and run the verifier once with that
flag enabled. Then I realized that given that the OwnershipModelEliminator is a
function pass, I really need to put the state on whether or not ownership is
enabled on functions. Now this commit refactors the verifier to use the state on
the function when determining if it should allow for ownership qualified
instructions or not in a specific function.
rdar://28685236
radar rdar://problem/28434323
SILGen has no reason to insert shadow copies for inout parameters any more. They cannot be captured. We still emit these copies. Sometimes deshadowing removes them, but sometimes it does not.
In this PR we just avoid emitting the copies and remove the deshadowing pass.
This PR chery-picked some of @dduan work and built on top of it.
This consists of 3 parts:
1) Extend CallerAnalysis to also provide information if a function is partially applied
2) A new DeadArgSignatureOpt pass, similar to FunctionSignatureOpts, which just specializes for dead arguments of partially applied functions.
3) Let CapturePropagation eliminate such partial_apply instructions and replace them with a thin_to_thick conversion of the specialized functions.
This optimzation improves benchmarks where static struct or class functions are passed as a closure (e.g. -20% for SortStrings).
Such functions have a additional metatype parameter. We used to create a partial_apply in this case, which allocates a context, etc.
But this is not necessary as the metatype parameter is not used in most cases.
rdar://problem/27513085