Diagnose base inference failure only if base gets inferred to be
a placeholder, any transitive placeholder inference points to the
problem being elsewhere.
Print bound type variables as `$T<Num> as <Type> @ <locator>` and
unbound ones as `$T<Num> [allows bindings to: ...] [attributes: ...] ... @ <locator>`
This simplifies the representation and allows clients to handle fewer
cases. It also removes an ambiguity in the representation which could
lead us to have two canonical types for the same type.
This is definitely not working yet, but I'm not making progress on
it quickly enough to unblock what we need to unblock; it'll have to
be fixed in parallel.
The _Copyable constraint was implemented as a marker protocol.
That protocol is part of the KnownProtocol's in the compiler.
When `ASTContext::getProtocol(KnownProtocolKind kind)` tries
to find the ProtocolDecl for Copyable, it will look in the
stdlib module (i.e., Swift module), which is where I initially
planned to put it.
That created problems initially when some regression tests
use `-parse-stdlib` failed to do that protocol lookup, which is
essential for adding the constraint (given the current implementation).
That led to believe we need to pull Copyable out of the stdlib, but that's
wrong. In fact, when building the Swift module itself, we do `-parse-stdlib`
but we also include `-module-name Swift`. This causes the _Copyable protocol
defined in the Stdlib to be correctly discovered while building the stdlib
itself (see the test case in this commit). So, the only downside of
having the Copyable protocol in the Stdlib is that `-parse-stdlib` tests
in the compiler can't use move-only types correctly, as they'll be
allowed in generic contexts. No real program would build like this.
Until I have time to do a further refactoring, this is an acceptable trade-off.
fixes rdar://104898230
If a result builder transformed closure doesn't rely on any external
type information it could be solved right after it's resolved. We
determine that based on three criteria:
- Builder type doesn't have any unresolved generic parameters;
- Closure doesn't have any parameters;
- The contextual result type is either concrete or opaque type.
constraints, vend potential bindings through PotentialBindings::infer.
This allows for bidirectional binding inference from the pack type to the
element type and vice versa.
Enable type checking support for explicitly specifying generic arguments to
a macro, e.g., `#stringify<Double>(1 + 2)`. To do so, introduce a new
kind of constraint that performs explicit argument matching against the
generic parameters of a macro only after the overload is chosen.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022