i.e.
`S().f` is sendable if `S()` is a Sendable type
Partial apply and unapplied methods of Sendable types should be
marked as Sendable in the constraint system, including declarations
and unapplied functions as parameters.
Conflicts:
- `lib/AST/TypeCheckRequests.cpp` renamed `isMoveOnly` which requires
a static_cast on rebranch because `Optional` is now a `std::optional`.
Teach the constraint solver about the subtyping rule that permits
converting one function type to another when the effective thrown error
type of one is a subtype of the effective thrown error type of the
other, using `any Error` for untyped throws and `Never` for
non-throwing.
With minor other fixes, this allows us to use typed throws for generic
functions that carry a typed error from their arguments through to
themselves, which is in effect a typed `rethrows`:
```swift
func mapArray<T, U, E: Error>(_ array: [T], body: (T) throws(E) -> U)
throws(E) -> [U] {
var resultArray: [U] = .init()
for value in array {
resultArray.append(try body(value))
}
return resultArray
}
```
Add the thrown type into the AST representation of function types,
mapping from function type representations and declarations into the
appropriate thrown type. Add tests for serialization, printing, and
basic equivalence of function types that have thrown errors.
Conflicts:
- `CMakeLists.txt` caused by the extra `-D` added in rebranch to
reduce the number of deprecation warnings.
- `lib/Frontend/PrintingDiagnosticConsumer.cpp` caused by the removal
of one of the `#if SWIFT_SWIFT_PARSER` on rebranch (probably should
have been done on main).
`lookupConformance` request is not cached and constraint solver
performs a lot of them for the same type (i.e. during disjunction
solving), let's try to cache previously performed requests to
see whether additional memory use is worth the performance benefit.
An initial implementation of a rework in how
we prevent noncopyable types from being
substituted in places they are not permitted.
Instead of generating a constraint for every
generic parameter in the solver, we produce
real Copyable conformance requirements. This
is much better for our longer-term goal of
supporting `~Copyable` in more places.
These allow multi-statement `if`/`switch` expression
branches that can produce a value at the end by
saying `then <expr>`. This is gated behind
`-enable-experimental-feature ThenStatements`
pending evolution discussion.
If type is explicitly specialized i.e. `A<Int>` in certain cases its `TypeExpr`
or `OverloadedDeclRefExpr` (if type name is ambiguous) would be wrapped in
`UnresolvedSpecializeExpr` which has to be looked through when simplifying
`constructor member` so the anchor could point to the underlying type reference.
Resolves: https://github.com/apple/swift/issues/67799
Resolves: rdar://113577294
This is a futile attempt to discourage future use of getType() by
giving it a "scary" name.
We want people to use getInterfaceType() like with the other decl kinds.
llvm::SmallSetVector changed semantics
(https://reviews.llvm.org/D152497) resulting in build failures in Swift.
The old semantics allowed usage of types that did not have an
`operator==` because `SmallDenseSet` uses `DenseSetInfo<T>::isEqual` to
determine equality. The new implementation switched to using
`std::find`, which internally uses `operator==`. This type is used
pretty frequently with `swift::Type`, which intentionally deletes
`operator==` as it is not the canonical type and therefore cannot be
compared in normal circumstances.
This patch adds a new type-alias to the Swift namespace that provides
the old semantic behavior for `SmallSetVector`. I've also gone through
and replaced usages of `llvm::SmallSetVector` with the
`Swift::SmallSetVector` in places where we're storing a type that
doesn't implement or explicitly deletes `operator==`. The changes to
`llvm::SmallSetVector` should improve compile-time performance, so I
left the `llvm::SmallSetVector` where possible.
This attribute can be attached to a noncopyable struct to specify that its
storage is raw, meaning the type definition is (with some limitations)
able to do as it pleases with the storage. This provides a basis for
implementing types for things like atomics, locks, and data structures
that use inline storage to store conditionally-initialized values.
The example in `test/Prototypes/UnfairLock.swift` demonstrates the use
of a raw layout type to wrap Darwin's `os_unfair_lock` APIs, allowing
a lock value to be stored inside of classes or other types without
needing a separate allocation, and using the borrow model to enforce
safe access to lock-guarded storage.
Ignore conversion score increases during code completion to make sure we don't filter solutions that might start receiving the best score based on a choice of the code completion token.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Although variadic type is declared without `repeat` each of
its generic arguments is supposed to be a PackType which is
modeled in the interface type as `Pack{repeat ...}`. When
reference to such a type is opened by the constraint solver
we need to drop the Pack{repeat ...} structure because the
type variable would represent a pack type so `S<each T>`
is opened as `S<$T0>` instead of `S<Pack{repeat $T0}>`.
Resolves: https://github.com/apple/swift/issues/66095
Binding of pack expansion types is delayed until solving but use
of `Defaultable` was preventing it from being considered early
because that constraint impacts binding set ranking, switching
to `FallbackType` constraint give us better semantics where pack
expansion type variables are going to be bound as soon as they
have a contextual type.
Resolves: rdar://110819621