Previously getInterfaceType() would punt to getType() if no
interface type was set. This patch changes getInterfaceType()
to assert if no interface type is set, and updates various
places to set the interface type explicitly.
This brings us a step closer to removing PolymorphicFunctionType.
This flag tracks whether we have a special kind of imported class
that has limitations in what you can do with it. Currently it's
used for two things: CF classes, and the magic "Protocol" class used
to represent Objective-C protocol metadata. I'm planning to add a
third to handle classes with the recently-added objc_runtime_visible
attribute, which describes an Objective-C class whose runtime symbols
are hidden (forcibly preventing categories and subclassing). This is
used for some of the types in Dispatch, which has exposed some of the
classes that were considered implementation details on past OSs.
I'm splitting the flag into an enum rather than just marking the
Dispatch classes with the existing flag because we still need to
be able to /cast/ to the Dispatch types (which you can't do with CF
types today) and because they deserve better than to be lumped in
with CF for diagnostic purposes.
Groundwork for rdar://problem/26850367, which is that Swift will
happily let you extend the new Dispatch classes but then fails to find
the symbols at link-time.
The next patch creates a situation where we serialize a reference
to a TypeAliasDecl's GenericParamTypeDecl, which references the
inner DeclContext of the TypeAliasDecl itself. This was not being
deserialized properly, triggering assertions.
not have access to their type arguments at runtime. Use this to
fix the emission of native thunks for imported ObjC-generic
initializers, since they may need to perform bridging.
For now, pseudo-genericity is all-or-nothing, but we may want to
make it apply only to certain type arguments.
Also, clean up some code that was using dead mangling nodes.
I originally added this so that we would keep the signature around
even if type checking failed, and the function was given an
ErrorType.
Add a formal check to the AST verifier for this, and set the signature
in a few places where it wasn't being set.
Note that since we only serialize valid declarations, we don't have
to serialize a reference to the generic signature separately, but we
do have to remember to set it when deserializing, which wasn't being
done for destructors.
The verifier now asserts that Throws, ThrowsLoc and isBodyThrowing()
match up.
Also, add /*Label=*/ comments where necessary to make the long argument
lists easier to read, and cleaned up some inconsistent naming conventions.
I caught a case where ClangImporter where we were passing in a loc as
StaticLoc instead of FuncLoc, but probably this didn't affect anything.
This was mistakenly reverted in an attempt to fix buildbots.
Unfortunately it's now smashed into one commit.
---
Introduce @_specialize(<type list>) internal attribute.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
---
[SILOptimizer] Introduce an eager-specializer pass.
This pass finds generic functions with @_specialized attributes and
generates specialized code for the attribute's concrete types. It
inserts type checks and guarded dispatch at the beginning of the
generic function for each specialization. Since we don't currently
expose this attribute as API and don't specialize vtables and witness
tables yet, the only way to reach the specialized code is by calling
the generic function which performs the guarded dispatch.
In the future, we can build on this work in several ways:
- cross module dispatch directly to specialized code
- dynamic dispatch directly to specialized code
- automated specialization based on less specific hints
- partial specialization
- and so on...
I reorganized and refactored the optimizer's generic utilities to
support direct function specialization as opposed to apply
specialization.
Temporarily reverting @_specialize because stdlib unit tests are
failing on an internal branch during deserialization.
This reverts commit e2c43cfe14, reversing
changes made to 9078011f93.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
It appears we were only using this to see if an associated type was
derived or defaulted. This code didn't mesh well with the other stuff
I was doing for default implementations, so I'd rather rip it out and
just rely on calling 'isImplicit' to check for derived associated
types instead.
Note that there's a small change of behavior -- if an associated type
is derived for one conformance, and then used as a witness in another,
we were previously only marking it as defaulted in the first one,
but now it is marked as defaulted in both. I do not believe this has
any meaningful consequences.
There's an immediate need for this in the core libs, and we have most of the necessary pieces on hand to make it easy to implement. This is an unpolished initial implementation, with the following limitations, among others:
- It doesn't support bridging error conventions,
- It relies on ObjC interop,
- It doesn't check for symbol name collisions,
- It has an underscored name with required symbol name `@cdecl("symbol_name")`, awaiting official bikeshed painting.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
There's a group of methods in `DeclContext` with names that start with *is*,
such as `isClassOrClassExtensionContext()`. These names suggests a boolean
return value, while the methods actually return a type declaration. This
patch replaces the *is* prefix with *getAs* to better reflect their interface.
computing its type. NFC, but it means that dumping the type in the
deubgger while in computeType() works better.
Make sure to set "isrecursive" in ArchetypeBuilder.cpp on an
associated type when the container is found to be recursive even if
we don't emit the diagnostic. Spotted by inspection, NFC AFAIK.
Enhance the ASTDumper to print the recursive bit on associated types.
Introduce a new attribute, swift3_migration, that lets us describe the
transformation required to map a Swift 2.x API into its Swift 3
equivalent. The only transformation understood now is "renamed" (to
some other declaration name), but there's a message field where we can
record information about other changes. The attribute can grow
somewhat (e.g., to represent parameter reordering) as we need it.
Right now, we do nothing but store and validate this attribute.
As part of this, use a different enum for parsed generic requirements.
NFC except that I noticed that ASTWalker wasn't visiting the second
type in a conformance constraint; fixing this seems to have no effect
beyond producing better IDE annotations.
This eliminates some minor overheads, but mostly it eliminates
a lot of conceptual complexity due to the overhead basically
appearing outside of its context.
The main idea here is that we really, really want to be
able to recover the protocol requirement of a conformance
reference even if it's abstract due to the conforming type
being abstract (e.g. an archetype). I've made the conversion
from ProtocolConformance* explicit to discourage casual
contamination of the Ref with a null value.
As part of this change, always make conformance arrays in
Substitutions fully parallel to the requirements, as opposed
to occasionally being empty when the conformances are abstract.
As another part of this, I've tried to proactively fix
prospective bugs with partially-concrete conformances, which I
believe can happen with concretely-bound archetypes.
In addition to just giving us stronger invariants, this is
progress towards the removal of the archetype from Substitution.
A protocol conformance needs to know what declarations satisfy requirements;
these are called "witnesses". For a value (non-type) witness, this takes the
form of a ConcreteDeclRef, i.e. a ValueDecl plus any generic specialization.
(Think Array<Int> rather than Array<T>, but for a function.)
This information is necessary to compile the conformance, but it causes
problems when the conformance is used from other modules. In particular,
the type used in a specialization might itself be a generic type in the
form of an ArchetypeType. ArchetypeTypes can't be meaningfully used
outside their original context, however, so this is a weird thing to
have to deal with. (I'm not going to go into when a generic parameter is
represented by an ArchetypeType vs. a GenericTypeParamType, partially
because I don't think I can explain it well myself.)
The above issue becomes a problem when we go to use the conformance from
another module. If module C uses a conformance from module B that has a
generic witness from module A, it'll think that the archetypes in the
specialization for the witness belong in module B. Which is just wrong.
It turns out, however, that no code is using the full specializations for
witnesses except for when the conformance is being compiled and emitted.
So this commit sidesteps the problem by just not serializing the
specializations that go with the ConcreteDeclRef for a value witness.
This doesn't fix the underlying issue, so we should probably still see
if we can either get archetypes from other contexts out of value witness
ConcreteDeclRefs, or come up with reasonable rules for when they're okay
to use.
rdar://problem/23892955
Under -enable-infer-default-arguments, the Clang importer infers some
default arguments for imported declarations. Rather than jumping
through awful hoops to make sure that we create default argument
generators (which will likely imply eager type checking), simply
handle these cases as callee-side expansions.
This makes -enable-infer-default-arguments usable, fixing
rdar://problem/24049927.
to check the implicit bit for decls, because otherwise we'd consider
params declared with a name of `self` as being "the self parameter".
This is trivial, except for the fact that we don't serialize the
implicit bit on parameters. I can't bring myself to burn encoding
space for this (particularly since we shouldn't be encoding self
decls in the first place!), so make the deserializer infer this bit
instead.
Parameters (to methods, initializers, accessors, subscripts, etc) have always been represented
as Pattern's (of a particular sort), stemming from an early design direction that was abandoned.
Being built on top of patterns leads to patterns being overly complicated (e.g. tuple patterns
have to have varargs and default parameters) and make working on parameter lists complicated
and error prone. This might have been ok in 2015, but there is no way we can live like this in
2016.
Instead of using Patterns, carve out a new ParameterList and Parameter type to represent all the
parameter specific stuff. This simplifies many things and allows a lot of simplifications.
Unfortunately, I wasn't able to do this very incrementally, so this is a huge patch. The good
news is that it erases a ton of code, and the technical debt that went with it. Ignoring test
suite changes, we have:
77 files changed, 2359 insertions(+), 3221 deletions(-)
This patch also makes a bunch of wierd things dead, but I'll sweep those out in follow-on
patches.
Fixes <rdar://problem/22846558> No code completions in Foo( when Foo has error type
Fixes <rdar://problem/24026538> Slight regression in generated header, which I filed to go with 3a23d75.
Fixes an overloading bug involving default arguments and curried functions (see the diff to
Constraints/diagnostics.swift, which we now correctly accept).
Fixes cases where problems with parameters would get emitted multiple times, e.g. in the
test/Parse/subscripting.swift testcase.
The source range for ParamDecl now includes its type, which permutes some of the IDE / SourceModel tests
(for the better, I think).
Eliminates the bogus "type annotation missing in pattern" error message when a type isn't
specified for a parameter (see test/decl/func/functions.swift).
This now consistently parenthesizes argument lists in function types, which leads to many diffs in the
SILGen tests among others.
This does break the "sibling indentation" test in SourceKit/CodeFormat/indent-sibling.swift, and
I haven't been able to figure it out. Given that this is experimental functionality anyway,
I'm just XFAILing the test for now. i'll look at it separately from this mongo diff.
This is necessary for some other work I'm doing, which really wants
paramdecls to have reasonable declcontexts. It is also a small step
towards generic subscripts.
Rather than plumbing a "has missing required members" flag all the way
through the LazyResolver's loadAllMembers and its implementations,
just eagerly update the "has missing required members" flag in the
Clang importer when it happens. More NFC cleanup.
The issue: we're apparently not keeping the archetypes in an instruction in sync
with the archetypes used in the SIL function's generic signature. This apparently
isn't the problem, but it's a good assertion to have, if a little ad hoc.
(The actual issue is rdar://problem/23892955.)
For better or worse, the type of a function can end up as ErrorType,
and the generic signature was not stored anywhere else, causing
crashes from orphaned generic type parameters.
This patch is the first in a series to make this more robust by
storing the generic signature before the interface type is computed.
Modeling nonescaping captures as @inout parameters is wrong, because captures are allowed to share state, unlike 'inout' parameters, which are allowed to assume to some degree that there are no aliases during the parameter's scope. To model this, introduce a new @inout_aliasable parameter convention to indicate an indirect parameter that can be written to, not only by the current function, but by well-typed, well-synchronized aliasing accesses too. (This is unrelated to our discussions of adding a "type-unsafe-aliasable" annotation to pointer_to_address to allow for safe pointer punning.)