In addition to skipping it on textual Swift module dependencies which were built without C++ interop enabled, also skip it over similarly on binary Swift dependencies
Get rid of the boolean arguments for unavailability in AvailabilityQuery's
constructors and introduce a `asUnavailable()` modifier that can be used
instead in the contexts where unavailability is relevant.
Conditionally available opaque return types should support availability
conditions that are evaluated in any availability domain. Update
`ConditionallyAvailableSubstitutions` to model its conditions with
`AvailabilityQuery` instead of assuming that conditions are always a single
version query for the current platform.
Previously this flag was only used to pass explicit dependencies to compilation tasks. This change adds support for the dependency scanner to also consider these inputs when resolving dependencies.
Resolves https://github.com/swiftlang/swift-driver/issues/1951
Global actor kind also appends type offset that indicates what
global actor to use with the type. All of the isolation kinds
should be placed above it to make sure that there is never a
clash when i.e. `MainActor` is serialized as id `1`.
Resolves: rdar://153487603
Always give up early when attempting to deserialize a protocol
conformance broken by a context change. Don't attempt to replace missing
members of the conformance signature with invalid one, just mark the
whole protocol conformance as invalid.
The previous recovery logic, only for SourceKit mode and LLDB, was
inserting invalid conformances in the signature instead of dropping the
whole protocol conformance. It lead to failures later in the same
`finishNormalConformance` when accessing the invalid conformances.
rdar://98925842
When querying a Swift module, the scanner now also keeps track of all discovered candidate binary modules which are not compatible with current compilation.
- If a Swift dependency is successfully resolved to a compatible binary module or a textual interface, a warning is emitted for every incompatible binary Swift module discovered along the way.
- If a Swift dependency is not resolved, but incompatible module candidates were found, an error is emitted - while it is likely that the scan would fail downstream, it is also possible that an underlying Clang module dependency (with the same name) is successfuly resolved and the Swift lookup failure is ignored, which is still going to lead to failures most of the time if the client code assumes the presence of the Swift overlay module in this scenario.
This change refactors common error reporting by the scanner into a 'ModuleDependencyIssueReporter' class, which also keeps track of all diagnosed failed lookups to avoid repeating diagnostics.
Gracefully handle `LocatableType` types if they show up during
serialization. This is a temporary fix until we can remove
`TransitivelyConformsTo` constraint from the solver which is
the underlying cause of the issue (see https://github.com/swiftlang/swift/pull/82541).
Resolves: rdar://153461854
use local funcs to implement `defer`, this also fixes several
bugs with that feature, such as it breaking in nonisolated
functions when a default isolation is in effect in the source file.
Change how we compute isolation of local funcs. The rule here is
supposed to be that non-`@Sendable` local funcs are isolated the
same as their enclosing context. Unlike closure expressions, this
is unconditional: in instance-isolated functions, the isolation
does not depend on whether `self` is captured. But the computation
was wrong: it didn't translate global actor isolation between
contexts, it didn't turn parameter isolation into capture isolation,
and it fell through for several other kinds of parent isolation,
causing the compiler to try to apply default isolation instead.
I've extracted the logic from the closure expression path into a
common function and used it for both paths.
The capture computation logic was forcing a capture of the
enclosing isolation in local funcs, but only for async functions.
Presumably this was conditional because async functions need the
isolation for actor hops, but sync functions don't really need it.
However, this was causing crashes with `-enable-actor-data-race-checks`.
(I didn't investigate whether it also failed with the similar
assertion we do with preconcurrency.) For now, I've switched this
to capture the isolated instance unconditionally. If we need to
be more conservative by either only capturing when data-race checks
are enabled or disabling the checks when the isolation isn't captured,
we can look into that.
Fix a bug in capture isolation checking. We were ignoring captures
of nonisolated declarations in order to implement the rule that
permits `nonisolated(unsafe)` variables to be captured in
non-sendable closures. This check needs to only apply to variables!
The isolation of a local func has nothing to do with its sendability
as a capture.
That fix exposed a problem where we were being unnecessarily
restrictive with generic local func declarations because we didn't
consider them to have sendable type. This was true even if the
genericity was purely from being declared in a generic context,
but it doesn't matter, they ought to be sendable regardless.
Finally, fix a handful of bugs where global actor types were not
remapped properly in SILGen.
Move per-query state out of ScanningService. There is still a check to
make sure the CASOptions are matching between queries because of the
requirement on clang scanner. Otherwise, the scanning service should
contain no per-query information anymore.
Resolves: https://github.com/swiftlang/swift/issues/82490