This was used a long time ago for a design of a scanner which could rely on the client to specify that some modules *will be* present at a given location but are not yet during the scan. We have long ago determined that the scanner must have all modules available to it at the time of scan for soundness. This code has been stale for a couple of years and it is time to simplify things a bit by deleting it.
For the main source module, provide info on which dependencies are directly imported into the user program, explicitly ('import' statement) or implicitly (e.g. stdlib). Thist list does not include Swift overlay dependencies, cross-import dependencies, bridging header dependencies.
Add ability to automatically chaining the bridging headers discovered from all
dependencies module when doing swift caching build. This will eliminate all
implicit bridging header imports from the build and make the bridging header
importing behavior much more reliable, while keep the compatibility at maximum.
For example, if the current module A depends on module B and C, and both B and
C are binary modules that uses bridging header, when building module A,
dependency scanner will construct a new header that chains three bridging
headers together with the option to build a PCH from it. This will make all
importing errors more obvious while improving the performance.
Recent change deprecated these methods and made the stubs return nullptr instead of empty sets, which will still trigger an error in a driver which pre-dates the change.
Batch dependency scanning was added as a mechanism to support multiple compilation contexts within a single module dependency graph.
The Swift compiler and the Explicitly-built modules model has long since abandoned this approach and this code has long been stale. It is time to remove it and its associated C API.
There were two cache replay code exists, one for cache replay from
swift-frontend, the other for replay using C API from libSwiftScan. It
is easy to forget to update one copy when new specialized cache replay
logic is added for some output kinds. Now unify the replay logics to a
single location to avoid confusion. This is a rewrite of the existing
logic and NFCI.
Instead, each scan's 'ModuleDependenciesCache' will hold all of the data corresponding to discovered module dependencies.
The initial design presumed the possibility of sharing a global scanning cache amongs different scanner invocations, possibly even different concurrent scanner invocations.
This change also deprecates two libSwiftScan entry-points: 'swiftscan_scanner_cache_load' and 'swiftscan_scanner_cache_serialize'. They never ended up getting used, and since this code has been largely stale, we are confident they have not otherwise had users, and they do not fit with this design.
A follow-up change will re-introduce moduele dependency cache serialization on a per-query basis and bring the binary format up-to-date.