This change adds support for WASI in stdlib tests. Some tests that expect a crash to happen had to be disabled, since there's currently no way to observe such crash from a WASI host.
This replaces swiftMSVCRT with swiftCRT. The big difference here is
that the `visualc` module is no longer imported nor exported. The
`visualc` module remains in use for a singular test wrt availability,
but this should effectively remove the need for the `visualc` module.
The difference between the MSVCRT and ucrt module was not well
understood by most. MSVCRT provided ucrt AND visualc, combining pieces
of the old MSVCRT and the newer ucrt. The ucrt module is what you
really wanted most of the time, however, would need to use MSVCRT for
the convenience aliases for type-generic math and the deprecated math
constants.
Unfortunately, we cannot shadow the `ucrt` module and create a Swift SDK
overlay for ucrt as that seems to result in circular dependencies when
processing the `_Concurrency` module.
Although this makes using the C library easier for most people, it has a
more important subtle change: it cleaves the dependency on visualc.
This means that this enables use of Swift without Visual Studio for the
singular purpose of providing 3 header files. Additionally, it removes
the need for the installation of 2 of the 4 support files. This greatly
simplifies the deployment process on Windows.
Clean up a few general patterns that are now obviated by canImport
This aligns more generally with the cleanup that the Swift Package
Manager has already done in their automated XCTest-plumbing tool in
apple/swift-package-manager#1826.
These should hopefully all be uncontroversial, minimal changes to deal
with progressing the build to completion on OpenBSD or addressing minor
portability issues. This is not the full set of changes to get a
successful build; other portability issues will be addressed in future
commits.
Most of this is just adding the relevant clauses to the ifdefs, but of
note in this commit:
* StdlibUnittest.swift: the default conditional in _getOSVersion assumes
an Apple platform, therefore the explicit conditional and the relevant
enums need filling out. The default conditional should be #error, but
we'll fix this in a different commit.
* tgmath.swift.gyb: inexplicably, OpenBSD is missing just lgammal_r.
Tests are updated correspondingly.
* ThreadLocalStorage.h: we use the pthread implementation, so it
seems we should typedef __swift_thread_key_t as pthread_key_t.
However, that's also a tweak for another commit.
Misaligned indices were fixed in 5.1, but we should disable the test
when testing back deployment.
Adds a shared helper to StdlibUnittest for the run time check.
This is a giant squashing of a lot of individual changes prototyping a
switch of String in Swift 5 to be natively encoded as UTF-8. It
includes what's necessary for a functional prototype, dropping some
history, but still leaves plenty of history available for future
commits.
My apologies to anyone trying to do code archeology between this
commit and the one prior. This was the lesser of evils.
SwiftPrivate/PRNG.swift:
- currently uses `theGlobalMT19937`;
- previously used `arc4random` (see #1939);
- is obsoleted by SE-0202: Random Unification.
* Remove case destructuring to _
* Remove some Iterator.Element
* Which idiot wrote this? Oh.
* Switch NibbleSort to just use default impls... shouldn't change perf
Cygwin is considered a distinct target with a distinct ABI, environment
conditions, and data types. Though the goal of the project is
native Windows integration with UNIX-likes, that is not compatible with
the idea that the platform can be ignored as Win-like enough to have the
existing os(Windows) condition apply.
- CYGWIN symbol is used to distinguish Cygwin environment from other OS
and other environment in Windows.
- Added windows and windowsCygnus to OSVersion in StdlibUnittest
What I've implemented here deviates from the current proposal text
in the following ways:
- I had to introduce a FunctionArrowPrecedence to capture the parsing
of -> in expression contexts.
- I found it convenient to continue to model the assignment property
explicitly.
- The comparison and casting operators have historically been
non-associative; I have chosen to preserve that, since I don't
think this proposal intended to change it.
- This uses the precedence group names and higherThan/lowerThan
as agreed in discussion.
This adds an Android target for the stdlib. It is also the first
example of cross-compiling outside of Darwin.
Mailing list discussions:
1. https://lists.swift.org/pipermail/swift-dev/Week-of-Mon-20151207/000171.html
2. https://lists.swift.org/pipermail/swift-dev/Week-of-Mon-20151214/000492.html
The Android variant of Swift may be built using the following `build-script`
invocation:
```
$ utils/build-script \
-R \ # Build in ReleaseAssert mode.
--android \ # Build for Android.
--android-ndk ~/android-ndk-r10e \ # Path to an Android NDK.
--android-ndk-version 21 \
--android-icu-uc ~/libicu-android/armeabi-v7a/libicuuc.so \
--android-icu-uc-include ~/libicu-android/armeabi-v7a/icu/source/common \
--android-icu-i18n ~/libicu-android/armeabi-v7a/libicui18n.so \
--android-icu-i18n-include ~/libicu-android/armeabi-v7a/icu/source/i18n/
```
Android builds have the following dependencies, as can be seen in
the build script invocation:
1. An Android NDK of version 21 or greater, available to download
here: http://developer.android.com/ndk/downloads/index.html.
2. A libicu compatible with android-armv7.