Previously, we skipped checking the return type of a function for safety
as we expected to warn at the use of the returned value:
let x = returnsUnsafe()
usesUnsafe(x) // warn here
Unfortunately, this resulted in missing some unsafe constructs that can
introduce memory safety issues when the use of the return value had a
different shape resulting in false negatives for cases like:
return returnsUnsafe()
or
usesUnsafe(returnsUnsafe())
This PR changes the analysis to always take return types of function
calls into account.
rdar://157237301
`_copyContents(initializing:)` is a core method of Sequence, and it is used surprisingly often to copy stuff out of sequences. Array’s internal types currently have explicit implementations of it that trap (to prevent a performance bug due to the default iterator-based implementation. This has proved a bad idea, as not all code paths that end up calling `_copyContents` have actually been expunged — so we replaced a performance bug with a catastrophic correctness bug. 😥
Rather than trying to play whack-a-mole with code paths that end up in `_copyContents`, replace the traps with (relatively) efficient implementations, based on the ancient `_copyContents(subRange:initializing)` methods that have already been there all this time.
This resolves https://bugs.swift.org/browse/SR-14663.
I expect specialization will make this fix deploy back to earlier OSes in most (but unfortunately not all) cases.
For this special case we copied the objects out of the cocoa array without retaining them.
This lead to a double-free crash.
Unfortunately I could not come up with an isolated test case.
rdar://74624065
Inlinable code is permitted to rely on these associated types, so we
need to make sure their declarations are printed in the parseable
interface.
Part of rdar://problem/43824052
* Make Range conditionally a Collection
* Convert ClosedRange to conditionally a collection
* De-gyb Range/ClosedRange, refactoring some methods.
* Remove use of Countable{Closed}Range from stdlib
* Remove Countable use from Foundation
* Fix test errors and warnings resulting from Range/CountableRange collapse
* fix prespecialize test for new mangling
* Update CoreAudio use of CountableRange
* Update SwiftSyntax use of CountableRange
* Restore ClosedRange.Index: Hashable conformance
* Move fixed typechecker slowness test for array-of-ranges from slow to fast, yay
* Apply Doug's patch to loosen test to just check for error
Update for SE-0107: UnsafeRawPointer
This adds a "mutating" initialize to UnsafePointer to make
Immutable -> Mutable conversions explicit.
These are quick fixes to stdlib, overlays, and test cases that are necessary
in order to remove arbitrary UnsafePointer conversions.
Many cases can be expressed better up by reworking the surrounding
code, but we first need a working starting point.
The defaults we were generating for Collection and
BidirectionalCollection didn't make any sense, because if you could do
that strideable arithmetic then you essentially had random access.
Instead we constrain the defaults to apply to RandomAccessCollection
where the Indices are a CountableRange.
Implements SE-0055: https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md
- Add NULL as an extra inhabitant of Builtin.RawPointer (currently
hardcoded to 0 rather than being target-dependent).
- Import non-object pointers as Optional/IUO when nullable/null_unspecified
(like everything else).
- Change the type checker's *-to-pointer conversions to handle a layer of
optional.
- Use 'AutoreleasingUnsafeMutablePointer<NSError?>?' as the type of error
parameters exported to Objective-C.
- Drop NilLiteralConvertible conformance for all pointer types.
- Update the standard library and then all the tests.
I've decided to leave this commit only updating existing tests; any new
tests will come in the following commits. (That may mean some additional
implementation work to follow.)
The other major piece that's missing here is migration. I'm hoping we get
a lot of that with Swift 1.1's work for optional object references, but
I still need to investigate.
Most of this is in updating the standard library, SDK overlays, and
piles of test cases to use the new names. No surprises here, although
this shows us some potential heuristic tweaks.
There is one substantive compiler change that needs to be factored out
involving synthesizing calls to copyWithZone()/copy(zone:). Aside from
that, there are four failing tests:
Swift :: ClangModules/objc_parse.swift
Swift :: Interpreter/SDK/Foundation_test.swift
Swift :: Interpreter/SDK/archiving_generic_swift_class.swift
Swift :: Interpreter/SDK/objc_currying.swift
due to two independent remaining compiler bugs:
* We're not getting partial ordering between NSCoder's
encode(AnyObject, forKey: String) and NSKeyedArchiver's version of
that method, and
* Dynamic lookup (into AnyObject) doesn't know how to find the new
names. We need the Swift name lookup tables enabled to address this.