Previously type sizes would be inconsistently sourced from either the LLVM type
or the FixedTypeInfo, depending on the call site. This was problematic because
TypeInfo operates with a resolution of whole bytes, which means that types such
as i1 would get a reported as having a size of 8. This patch now asserts that
all occurrences of the same type have the same size as the first, cached
occurence.
To avoid triggering the cached type verification assertion, this patch avoids
caching of storage-sized containers. It also removes the unique identifier from
forward declarations, which could lead to type confusion during LTO.
rdar://102367872
LLVM r336847 changed FileCheck's CHECK-DAG feature to stop supporting
overlapping matches. I already fixed one test by invoking FileCheck with the
-allow-deprecated-dag-overlap option, but it turns out there are a bunch
more of them. This change applies the same workaround to all of them.
instead of using name and decl context.
The advantages of this approach are three-fold:
- This is necessary to support inlined generic functions.
- We can retire the debugger-specific type name manfgling mode for archetypes.
- This saves 270kb of debug information in the x86_64 libSwiftCore.dylib alone.
<rdar://problem/38306256>
I am going to leave in the infrastructure around this just in case. But there is
no reason to keep this in the tests themselves. I can always just revert this
and I don't think merge conflicts are likely due to previous work I did around
the tooling for this.
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
Prior to this patch, debug info was storing the original swift type
for function objects. This could be very wrong in optimized code. This
patch stores the lowered function type in the debug info and adds the
necessary type reconstruction code (tested via the LLDB testsuite) to
allow reconstructing a Swift type from a mangled lowered type.
<rdar://problem/28859432>
And include some supplementary mangling changes:
- Give the first generic param (depth=0, index=0) a single character mangling. Even after removing the self type from method declaration types, 'Self' still shows up very frequently in protocol requirement signatures.
- Fix the mangling of generic parameter counts to elide the count when there's only one parameter at the starting depth of the mangling.
Together these carve another 154KB out of a debug standard library. There's some awkwardness in demangled strings that I'll clean up in subsequent commits; since decl types now only mangle the number of generic params at their own depth, it's context-dependent what depths those represent, which we get wrong now. Currying markers are also wrong, but since free function currying is going away, we can mangle the partial application thunks in different ways.
Swift SVN r32896
Canonical dependent member types are always based from a generic parameter, so we can use a more optimal mangling that assumes this. We can also introduce substitutions for AssociatedTypeDecls, and when a generic parameter in a signature is constrained by a single protocol, we can leave that protocol qualification out of the unsubstituted associated type mangling. These optimizations together shrink the standard library by 117KB, and bring the length of the longest Swift symbol in the stdlib down from 578 to 334 characters, shorter than the longest C++ symbol in the stdlib.
Swift SVN r32786
With all the previous bugfixes it is no longer necessary to keep separate
copies because inlining and generic specialization is now handled
correctly so each specialized variable has its own specialized version
of the archetype.
rdar://problem/21109015
Swift SVN r29187
The rule changes are as follows:
* All functions (introduced with the 'func' keyword) have argument
labels for arguments beyond the first, by default. Methods are no
longer special in this regard.
* The presence of a default argument no longer implies an argument
label.
The actual changes to the parser and printer are fairly simple; the
rest of the noise is updating the standard library, overlays, tests,
etc.
With the standard library, this change is intended to be API neutral:
I've added/removed #'s and _'s as appropriate to keep the user
interface the same. If we want to separately consider using argument
labels for more free functions now that the defaults in the language
have shifted, we can tackle that separately.
Fixes rdar://problem/17218256.
Swift SVN r27704
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
This is needed for tests which define internal functions which should not be eliminated.
So far this was not needed because of a hack which prevented whole-module-optimizations for tests.
Swift SVN r22658