The return pointer may point into the materialized base value, so if the base needs
materialization, ensure that materialization covers any futher projection of the
value.
Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
This change ensures all store_borrows are ended with an end_borrow, and uses of the store_borrow
destination are all in the enclosing store_borrow scope and via the store_borrow return address.
Fix tests to reflect new store_borrow pattern
The old syntax was
@opened("UUID") constraintType
Where constraintType was the right hand side of a conformance requirement.
This would always create an archetype where the interface type was `Self`,
so it couldn't cope with member types of opened existential types.
Member types of opened existential types is now a thing with SE-0309, so
this lack of support prevented writing SIL test cases using this feature.
The new syntax is
@opened("UUID", constraintType) interfaceType
The interfaceType is a type parameter rooted in an implicit `Self`
generic parameter, which is understood to be the underlying type of the
existential.
Fixes rdar://problem/93771238.
In a previous commit, I banned in the verifier any SILValue from producing
ValueOwnershipKind::Any in preparation for this.
This change arises out of discussions in between John, Andy, and I around
ValueOwnershipKind::Trivial. The specific realization was that this ownership
kind was an unnecessary conflation of the a type system idea (triviality) with
an ownership idea (@any, an ownership kind that is compatible with any other
ownership kind at value merge points and can only create). This caused the
ownership model to have to contort to handle the non-payloaded or trivial cases
of non-trivial enums. This is unnecessary if we just eliminate the any case and
in the verifier separately verify that trivial => @any (notice that we do not
verify that @any => trivial).
NOTE: This is technically an NFC intended change since I am just replacing
Trivial with Any. That is why if you look at the tests you will see that I
actually did not need to update anything except removing some @trivial ownership
since @any ownership is represented without writing @any in the parsed sil.
rdar://46294760
This is the last part of SILGen conditionalized on EnableSILOwnership being
set. It also (as you can tell from the diff) eliminates a bunch of code from the
tests.
rdar://29791263
This commit allows the initial switch subject value to be emitted at +0 if we
can emit it that way. As you can imagine since we have +0 normal function
arguments this should tighten up a lot of code around switches on arguments. So
I got to delete a bunch of code in the tests. = ).
Some things to note:
1. If the switch is given a +1 value, we will still try to let it through at +1
until we hit a part of the decision tree where previously we would need to use
TakeOnSuccess. This means that +1 values that go through irrefutable patterns
like tuple splitting should still be emitted at +1.
2. If we are returned an address only type without a cleanup, we copy it and
pass it down at +1 like the old code.
3. I also elided the last ownership check in SILGenPattern in this commit. After
this, there is only 1 specialization for ownership in the swift compiler that is
in Apply emission. Thats my next target.
rdar://29791263
The same base value is necessary to invoke other accessors as part of the same access, but we would end up consuming it as part of materializing the base value for calls into nonmutating setters.
Fixes SR-8990 | rdar://problem/45274900.
This is how we originally controlled whether or not we printed out ownership
annotations when we printed SIL. Since then, I have changed (a few months ago I
believe) the ownership model eliminator to know how to eliminate these
annotations from the SIL itself. So this hack can be removed.
As an additional benefit, this will let me rename -enable-sil-ownership to
-enable-sil-ownership-verifier. This will I hope eliminate confusion around this
option in the short term while I am preparing to work on semantic sil again.
rdar://42509812
This reverts commit 742e7fc583. This
causes other source compatibility regressions due to the extended exclusive access to
the existential (such as rdar://problem/39524104). A false-positive
exclusivity failure might lead to runtime errors, whereas the cases we
can't support previous to this patch can at least reliably be handled
statically.
The SILGen testsuite consists of valid Swift code covering most language
features. We use these tests to verify that no unknown nodes are in the
file's libSyntax tree. That way we will (hopefully) catch any future
changes or additions to the language which are not implemented in
libSyntax.
I am going to leave in the infrastructure around this just in case. But there is
no reason to keep this in the tests themselves. I can always just revert this
and I don't think merge conflicts are likely due to previous work I did around
the tooling for this.
4b25945 changed codegen for lvalue OpenExistentialExprs so that the existential was not opened until the OpaqueValue's lvalue was evaluated, but this is incorrect—we need to open the dynamic type of the existential immediately since it can be used arbitrarily within the subexpression. This caused a regression when evaluating default argument generators on protocol extension methods (rdar://problem/37031037), and would become a bigger problem when we generalize the ability to open existentials.
Use the LValue formal evaluation scope to destroy temporary lvalues that aren't
part of the expression's resulting value.
Disable an old hack that destroyed call site arguments after the call.
This is the first step in cleanup up LValue materialization.
Now that SILGen can correctly lower lvalue accesses of
class existential payloads, remove a hack in Sema that
was simply doing the wrong thing.
Fixes <rdar://problem/31858378>.
Officially kick SILBoxType over to be "nominal" in its layout, with generic layouts structurally parameterized only by formal types. Change SIL to lower a capture to a nongeneric box when possible, or a box capturing the enclosing generic context when necessary.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
This ensures that ownership is properly propagated forward through the use-def
graph.
This was the work that was stymied by issues relating to SILBuilder performing
local ARC dataflow. I ripped out that local dataflow in 6f4e2ab and added a
cheap ARC guaranteed dataflow pass that performs the same optimization.
Also in the process of doing this work, I found that there were many SILGen
tests that were either pattern matching in the wrong functions or had wrong
CHECK lines (for instance CHECK_NEXT). I fixed all of these issues and also
expanded many of the tests so that they verify ownership. The only work I left
for a future PR is that there are certain places in tests where we are using the
projection from an original value, instead of a copy. I marked those with a
message SEMANTIC ARC TODO so that they are easy to find.
rdar://28685236
- All parts of the compiler now use ‘P1 & P2’ syntax
- The demangler and AST printer wrap the composition in parens if it is
in a metatype lookup
- IRGen mangles compositions differently
- “protocol<>” is now “swift.Any”
- “protocol<_TP1P,_TP1Q>” is now “_TP1P&_TP1Q”
- Tests cases are updated and added to test the new syntax and mangling
This commit defines the ‘Any’ keyword, implements parsing for composing
types with an infix ‘&’, and provides a fixit to convert ‘protocol<>’
- Updated tests & stdlib for new composition syntax
- Provide errors when compositions used in inheritance.
Any is treated as a contextual keyword. The name ‘Any’
is used emit the empty composition type. We have to
stop user declaring top level types spelled ‘Any’ too.