Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
Although nonescaping closures are representationally trivial pointers to their
on-stack context, it is useful to model them as borrowing their captures, which
allows for checking correct use of move-only values across the closure, and
lets us model the lifetime dependence between a closure and its captures without
an ad-hoc web of `mark_dependence` instructions.
During ownership elimination, We eliminate copy/destroy_value instructions and
end the partial_apply's lifetime with an explicit dealloc_stack as before,
for compatibility with existing IRGen and non-OSSA aware passes.
The old syntax was
@opened("UUID") constraintType
Where constraintType was the right hand side of a conformance requirement.
This would always create an archetype where the interface type was `Self`,
so it couldn't cope with member types of opened existential types.
Member types of opened existential types is now a thing with SE-0309, so
this lack of support prevented writing SIL test cases using this feature.
The new syntax is
@opened("UUID", constraintType) interfaceType
The interfaceType is a type parameter rooted in an implicit `Self`
generic parameter, which is understood to be the underlying type of the
existential.
Fixes rdar://problem/93771238.
Previously we gave them the same SIL linkage as the method, then changed
the LLVM IR linkage to 'internal' (which is roughly equivalent to
SIL 'private') in IRGen.
This would crash in the SIL verifier if an @objc method was
'@_alwaysEmitIntoClient'. While such a combination of attributes is
silly since '@objc' methods are intrinsically part of the ABI, we
should not crash in this case.
The simplest fix is to just set the linkage to private at the SIL
level, avoiding the IRGen hack entirely.
When a method is called with fewer than two parameter lists,
transform it into a fully-applied call by wrapping it in a
closure.
Eg,
Foo.bar => { self in { args... self.bar(args...) } }
foo.bar => { self in { args... self.bar(args...) } }(self)
super.bar => { args... in super.bar(args...) }
With this change, SILGen only ever sees fully-applied calls,
which will allow ripping out some code.
This new way of doing curry thunks fixes a long-standing bug
where unbound references to protocol methods did not work.
This is because such a reference must open the existential
*inside* the closure, after 'self' has been applied, whereas
the old SILGen implementation of curry thunks really wanted
the type of the method reference to match the opened type of
the method.
A follow-up cleanup will remove the SILGen curry thunk
implementation.
Fixes rdar://21289579 and https://bugs.swift.org/browse/SR-75.
In a previous commit, I banned in the verifier any SILValue from producing
ValueOwnershipKind::Any in preparation for this.
This change arises out of discussions in between John, Andy, and I around
ValueOwnershipKind::Trivial. The specific realization was that this ownership
kind was an unnecessary conflation of the a type system idea (triviality) with
an ownership idea (@any, an ownership kind that is compatible with any other
ownership kind at value merge points and can only create). This caused the
ownership model to have to contort to handle the non-payloaded or trivial cases
of non-trivial enums. This is unnecessary if we just eliminate the any case and
in the verifier separately verify that trivial => @any (notice that we do not
verify that @any => trivial).
NOTE: This is technically an NFC intended change since I am just replacing
Trivial with Any. That is why if you look at the tests you will see that I
actually did not need to update anything except removing some @trivial ownership
since @any ownership is represented without writing @any in the parsed sil.
rdar://46294760
The SILGen testsuite consists of valid Swift code covering most language
features. We use these tests to verify that no unknown nodes are in the
file's libSyntax tree. That way we will (hopefully) catch any future
changes or additions to the language which are not implemented in
libSyntax.
I am going to leave in the infrastructure around this just in case. But there is
no reason to keep this in the tests themselves. I can always just revert this
and I don't think merge conflicts are likely due to previous work I did around
the tooling for this.
Otherwise, the plus_zero_* tests will have plus_zero_* as a module name, causing
massive FileCheck problems.
The reason why I am doing it with the main tests is so that I can use it when
syncing branches/etc.
radar://34222540
This fixes a crash when referencing partially-applied methods
from @_inlineable functions.
Also, curry thunks for private methods do not need shared
linkage; private is sufficient.
In 74d979f0ac, the policy was changed
so that only value type accessors are ever marked transparent, and
not class accessors.
This was intended to fix a bug where inlining an accessor of an
Objective-C-derived class across module boundaries caused a linker
failure because the accessor referenced a field offset variable,
which has hidden visibility.
However, this also caused a performance regression for Swift native
classes. Bring back the old behavior for Swift native classes in
non-resilient modules.
Fixes <rdar://problem/29884727>.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.