Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
Flow-isolation is a diagnostic SIL pass that finds
unsafe accesses to properties in initializers and
deinitializers that cannot gain isolation to otherwise
protect those accesses from concurrent modifications.
See SE-327 for more details about how and why it exists.
This commit includes changes and features like:
- The removal of the escaping-use restriction
- Flow-isolation that works properly with `defer` statements
- Flow-isolation with an emphasis on helpful diagnostics.
It also includes known issues like:
- Local / nonescaping functions are not analyzed by
flow-isolation, despite it being technically possible.
The main challenge in supporting it efficiently is that
such functions do not have a single exit-point, like
a `defer`. In particular, arbitrary functions can throw
so there are points where nonisolation should _not_ flow
out of the function at a call-site in the initializer, etc.
- The implementation of the flow-isolation pass is not
particularly memory efficient; it relies on BitDataflow
even though the particular flow problem is simple.
So, a more efficient implementation would be specialized for
this particular problem, etc.
There are also some changes to the Swift language itself: defer
will respect its context when deciding its property access kind.
Previously, a defer in an initializer would always access a stored
property through its accessor methods, instead of doing so directly
like its enclosing function might. This inconsistency is unfortunate,
so for Swift 6+ we make this consistent. For Swift 5, only a defer
in a function that is a member of the following kinds of types
will gain this consistency:
- an actor type
- any nominal type that is actor-isolated, excluding UnsafeGlobalActor.
These types are still rather new, so there is much less of a chance of
breaking expected behaviors around defer. In particular, the danger is
that users are relying on the behavior of defer triggering a property
observer within an init or deinit, when it would not be triggering it
without the defer.