This matches send non sendable but importantly also makes it clear that we are
talking about something that doesn't conform to the Sendable protocol which is
capitalized.
rdar://151802975
This PR refactors the ASTDumper to make it more structured, less mistake-prone, and more amenable to future changes. For example:
```cpp
// Before:
void visitUnresolvedDotExpr(UnresolvedDotExpr *E) {
printCommon(E, "unresolved_dot_expr")
<< " field '" << E->getName() << "'";
PrintWithColorRAII(OS, ExprModifierColor)
<< " function_ref=" << getFunctionRefKindStr(E->getFunctionRefKind());
if (E->getBase()) {
OS << '\n';
printRec(E->getBase());
}
PrintWithColorRAII(OS, ParenthesisColor) << ')';
}
// After:
void visitUnresolvedDotExpr(UnresolvedDotExpr *E, StringRef label) {
printCommon(E, "unresolved_dot_expr", label);
printFieldQuoted(E->getName(), "field");
printField(E->getFunctionRefKind(), "function_ref", ExprModifierColor);
if (E->getBase()) {
printRec(E->getBase());
}
printFoot();
}
```
* Values are printed through calls to base class methods, rather than direct access to the underlying `raw_ostream`.
* These methods tend to reduce the chances of bugs like missing/extra spaces or newlines, too much/too little indentation, etc.
* More values are quoted, and unprintable/non-ASCII characters in quoted values are escaped before printing.
* Infrastructure to label child nodes now exists.
* Some weird breaks from the normal "style", like `PatternBindingDecl`'s original and processed initializers, have been brought into line.
* Some types that previously used ad-hoc dumping functions, like conformances and substitution maps, are now structured similarly to the dumper classes.
* I've fixed the odd dumping bug along the way. For example, distributed actors were only marked `actor`, not `distributed actor`.
This PR doesn't change the overall style of AST dumps; they're still pseudo-S-expressions. But the logic that implements this style is now isolated into a relatively small base class, making it feasible to introduce e.g. JSON dumping in the future.
Allow an actor to be exposed to Objective-C via `@objc` without
inheriting from `NSObject`, and remove the loophole that allowed
actors to inherit from `NSObject`.
Fixes rdar://78333614
`actor` is a standalone contextual keyword now and should
be treated as such, `actor class` is no longer allowed
and results in a parse error.
Resolves: rdar://75753598
This patch updates the `actor class` spelling to `actor` in almost all
of the tests. There are places where I verify that we sanely handle
`actor` as an attribute though. These include:
- test/decl/class/actor/basic.swift
- test/decl/protocol/special/Actor.swift
- test/SourceKit/CursorInfo/cursor_info_concurrency.swift
- test/attr/attr_objc_async.swift
- test/ModuleInterface/actor_protocol.swift
Currently, we don't have a fix-it to insert 'async', so I've marked those places
as not expecting a fix-it, until someone goes and implements that (rdar://72313654)
NSObject is guaranteed to have no state and no Swift vtable, and is
necessary for Swift classes to implement the NSObject protocol. Allow
it (and only it) as the superclass of an actor class, so that actor
classes can be exposed to Objective-C.
Actor-isolated operations must not be directly accessible from anywhere
that is not already guaranteed to be running within the actor context.
Prevent such operations from being `@objc`, because that would allow
Objective-C code to violate actor isolation.
Allow the declaration of @objc async methods, mapping them to a
completion-handler API in Objective-C. This covers most of the
checking and semantics within the type checker:
* Declaring @objc async methods and checking their parameter/result types
* Determining the default Objective-C selector by adding
completionHandler/WithCompletionHandler as appropriate
* Determining the type of the completion handler parameter
* Inferring @objc from protocol requirements
* Inferring @objc from an overridden method