This convenience returns an optional `SemanticAvailableAttr` (since in the
future, lookup of the `AvailabilityDomain` can fail). It replaces
`Decl::getDomainForAvailableAttr()`, since most callers will need to form a
`SemanticAvailableAttr` with the resulting domain anyways.
This new attribute iterator returned from the query makes it simpler to
implement algorithms that need access to both the `AvailableAttr *` and its
corresponding `AvailabilityDomain`. This is also work towards making it
possible to return an optional `AvailabilityDomain` from
`Decl::getDomainForAvailableAttr()`.
The inclusion of the full diagnostic list (via DiagnosticList.h) in
DiagnosticGroups.h meant that touching any diagnostic caused most of
the world to rebuild, making me sad. Use forward declarations to limit
how much needs to be rebuilt when changing diagnostics.
Introduce an attribute to allow unsafe code within the annotated
declaration without presenting an unsafe interface to users. This is,
by its nature, and unsafe construct, and is used to document where
unsafe behavior is encapsulated in safe constructs.
There is an optional message that can be used as part of an audit
trail.
When a declaration is `@unsafe`, don't emit strict safety diagnostics
for uses of unsafe entities, constructs, or types within it. This
allows one to account for all unsafe behavior in a module using strict
memory safety by marking the appropriate declarations `@unsafe`.
Enhance the strict-safety diagnostics to suggest the addition of
`@unsafe` where it is needed to suppress them, with a Fix-It. Ensure
that all such diagnostics can be suppressed via `@unsafe` so it's
possible to get to the above state.
Also includes a drive-by bug fix where we weren't diagnosing unsafe
methods overriding safe ones in some cases.
Fixes rdar://139467327.
`UnsafeCastExpr` - A special kind of conversion that performs an unsafe
bitcast from one type to the other.
Note that this is an unsafe operation and type-checker is allowed to
use this only in a limited number of cases like: `any Sendable` -> `Any`
conversions in some positions, covariant conversions of function and
function result types.
When iterator consists of tuple of variable and iteration only mutates
the tuple partially, improve the warning message from "changing to 'let"
to "changing the pattern to '(..., case let, ...)"
Since the introduction of custom attributes (as part of property
wrappers), we've modeled the context of expressions within these
attributes as PatternBindingInitializers. These
PatternBindingInitializers would get wired in to the variable
declarations they apply to, establishing the appropriate declaration
context hierarchy. This worked because property wrappers only every
applied to---you guessed it!---properties, so the
PatternBindingInitializer would always get filled in.
When custom attributes were extended to apply to anything for the
purposes of macros, the use of PatternBindingInitializer became less
appropriate. Specifically, the binding declaration would never get
filled in (it's always NULL), so any place in the compiler that
accesses the binding might have to deal with it being NULL, which is a
new requirement. Few did, crashes ensued.
Rather than continue to play whack-a-mole with the abused
PatternBindingInitializer, introduce a new CustomAttributeInitializer
to model the context of custom attribute arguments. When the
attributes are assigned to a declaration that has a
PatternBindingInitializer, we reparent this new initializer to the
PatternBindingInitializer. This helps separate out the logic for
custom attributes vs. actual initializers.
Fixes https://github.com/swiftlang/swift/issues/76409 / rdar://136997841
The mangling of macro expansions relies on having a type-checked AST
for its enclosing context. When that enclosing context is within a
local context (say, a local type), mangling would trigger type
checking of that local type, which could then involve assigning local
discriminators. However, if this happens before type checking of the
enclosing function body, we would end up failing to assign closure
discriminators to (e.g.) autoclosures within the body.
The fundamental problem here is the interaction between discriminator
assignment (which can only happen after type checking) and mangling of
macro expansion buffers (which can happen during that type checking).
Break this cycle by providing a different approach to mangling macro
expansions within local contexts as the innermost non-local context +
a name-based discriminator within that local context. These manglings
are not ABI and are not stable, so we can adjust them later if we come
up with a scheme we like better. However, by breaking this cycle, we
eliminate assertions and miscompiles that come from missing
discriminators in this case.
Fixes rdar://139734958.