Rather than replacing the code completion file
on the `CompilerInstance` whenever we do a cached
top-level completion, let's set a new main module
instead.
This allows us to properly update the
`LoadedModules` map, and allows the retrieval of
the code completion file to be turned into a
request.
Remove the `PrimarySourceFiles` vector from the
frontend and replace it with a request on
ModuleDecl that retrieves the primary files for
the main module.
This is in preparation for having
`CompilerInstance::getMainModule` automatically
populate the main module with files when queried.
Rather than trying to continue the compilation
with an empty main module, let's bail out early if
we expect an implicit stdlib import and fail to
load in the stdlib.
This default formatting style remains the same "LLVM style". "Swift style"
is what was previously enabled via -enable-experimental-diagnostic-formatting
Module interface builder used to maintain a separate compiler instance for
building Swift modules. The configuration of this compiler instance is also
useful for dependencies scanner because it needs to emit front-end compiler invocation
for building Swift modules explicitly.
This patch refactor the configuration out to a delegate class, and the
delegate class is also used by the dependency scanner.
Additional flags in interface files may change parsing behavior like #if
statements. We should use a fresh ASTContext with these additional
flags when parsing interface files to collect imports.
rdar://62612027
Move the playground and debugger transforms out
of the Frontend and into `performTypeChecking`, as
we'd want them to be applied if
`performTypeChecking` was called lazily.
Implement a new "fast" dependency scanning option,
`-scan-dependencies`, in the Swift frontend that determines all
of the source file and module dependencies for a given set of
Swift sources. It covers four forms of modules:
1) Swift (serialized) module files, by reading the module header
2) Swift interface files, by parsing the source code to find imports
3) Swift source modules, by parsing the source code to find imports
4) Clang modules, using Clang's fast dependency scanning tool
A single `-scan-dependencies` operation maps out the full
dependency graph for the given Swift source files, including all
of the Swift and Clang modules that may need to be built, such
that all of the work can be scheduled up front by the Swift
driver or any other build system that understands this
option. The dependency graph is emitted as JSON, which can be
consumed by these other tools.
Now that we no longer interleave parsing and
type-checking for SIL, the main file doesn't need
to be handled separately. We can now parse it
along with the rest of the input files and
type-check it along with the rest of the primaries.
This commit also updates `performParseOnly` to
match the order in which the files are now parsed.
Add ModuleImplicitImportsRequest, which computes
the modules that should be implicitly imported by
each file of a given module. Use this request in
import resolution to add all the necessary
implicit imports.
The request computes the implicit imports by
consulting the ImplicitImportInfo, which ModuleDecl
can now be created with. This allows us to remove
uses of `SourceFile::addImports` in favor of
adding modules needed to be implicitly imported to
the ImplicitImportInfo.
Check whether the user has provided a valid
identifier when parsing the options. Also make
ImplicitImportModuleNames a private member of
FrontendOptions to prevent mutation after being
parsed.