At the moment CYGWIN pthreads implementation doesn't support the use of constexpr for static allocation versions. The way they define things results in a reinterpret_cast which violates constexpr.
Implements SE-0055: https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md
- Add NULL as an extra inhabitant of Builtin.RawPointer (currently
hardcoded to 0 rather than being target-dependent).
- Import non-object pointers as Optional/IUO when nullable/null_unspecified
(like everything else).
- Change the type checker's *-to-pointer conversions to handle a layer of
optional.
- Use 'AutoreleasingUnsafeMutablePointer<NSError?>?' as the type of error
parameters exported to Objective-C.
- Drop NilLiteralConvertible conformance for all pointer types.
- Update the standard library and then all the tests.
I've decided to leave this commit only updating existing tests; any new
tests will come in the following commits. (That may mean some additional
implementation work to follow.)
The other major piece that's missing here is migration. I'm hoping we get
a lot of that with Swift 1.1's work for optional object references, but
I still need to investigate.
- added read / write lock support
- added non-fatal error support to allow use of mutex in fatal error reporting pathway
- isolated pthread implementation to it own header/cpp file pair
- expanded unit tests to cover new code as well as better test existing mutex
- removed a layer of complexity that added no real value
Make sure the memory synchronization ordering on success is strictly stronger than the memory ordering of failure. This addresses a race reported by TSan when having both Swift tests and the runtime TSanified.
When a Clang-defined Objective-C class has the objc_runtime_visible
attribute, use objc_lookUpClass to get the Objective-C class object
rather than referencing the symbol directly. Also, ban subclassing of
Objective-C-runtime-visible classes as well as @objc on members of
extensions of such classes.
As a drive-by needed for this test, make
ClassDecl::getObjCRuntimeName() respect the Clang objc_runtime_name
attribute.
Fixes rdar://problem/25494454.
Fix an i32 vs. 64 issue in the IR matching for the IR generation test.
This reverts commit 09973e6956.
When a Clang-defined Objective-C class has the objc_runtime_visible
attribute, use objc_lookUpClass to get the Objective-C class object
rather than referencing the symbol directly. Also, ban subclassing of
Objective-C-runtime-visible classes as well as @objc on members of
extensions of such classes.
As a drive-by needed for this test, make
ClassDecl::getObjCRuntimeName() respect the Clang objc_runtime_name
attribute.
Fixes rdar://problem/25494454.
initialization in-place on demand. Initialize parent metadata
references correctly on struct and enum metadata.
Also includes several minor improvements related to relative
pointers that I was using before deciding to simply switch the
parent reference to an absolute reference to get better access
patterns.
Includes a fix since the earlier commit to make enum metadata
writable if they have an unfilled payload size. This didn't show
up on Darwin because "constant" is currently unenforced there in
global data containing relocations.
This patch requires an associated LLDB change which is being
submitted in parallel.
initialization in-place on demand. Initialize parent metadata
references correctly on struct and enum metadata.
Also includes several minor improvements related to relative
pointers that I was using before deciding to simply switch the
parent reference to an absolute reference to get better access
patterns.
This is more amenable to cross-platform remote reflection tests.
Also add a new callback to the memory reader: getSymbolAddress,
which will be used for getting the addresses of nominal type
descriptors for concrete and fixed generic types.
- Read the Parent pointer out of Class/Value metadata and create
typerefs for them.
- Add Parent fields to NominalTypeRef and BoundGenericTypeRef.
- Add TypeRef::getSubstMap(), which creates a new generic argument
map after substitution has taken place on it. This is used to
continue to burrow into nested value types, where generic type
parameters may have a different index.
- Use a DenseMap as that generic argument map.
- Unconditionally key the generic argument map with (Depth, Index)
- Clean up ordering and presentation of Index and Depth. In the rest
of the compiler, Depth comes before Index.
It's to be used by code produced by the ReleaseDevirtualizer.
As the function is only used for non-escaping objects, the deallocating bit is set non-atomically.
Be more conservative in terms of masking ISAs. This reduces tight coupling with the objc runtime. This commit adds the required calls to IRGen and the runtime, and a test case to make sure IRGen is correct.
Teach swift_deallocPartialClassInstance how to deal with classes that
have pure Objective-C classes in their hierarchy. In such cases, we
need to make sure a few things happen:
1) We deallocate via objc_release rather than
swift_deallocClassInstance.
2) We only attempt to find an execute ivar destroyers for
Swift-defined classes in the hierarchy
3) When we hit the most-derived pure Objective-C class, make sure that we
only execute the dealloc of that class and not any of the subclasses
(which would end up trying to destroy ivars again).
Fixes rdar://problem/25023544.
The size of a protocol's metadata was not a multiple of 8 bytes, so
on 64-bit platforms, the runtime would copy default witnesses from
the wrong address, because IRGen metadata does not add alignment padding,
whereas the in-memory structure does.
Fix this by adding a 32-bit padding field at the end of the protocol
descriptor. Technically this is not necessary on 32-bit, but this keeps
things simpler for now.
The test case for this is a library evolution test exercising resilient
default protocol requirements, but it is not quite ready to go in yet.
Adds a rough sketch of what will be a test harness, currently only supported
on OS X:
- Launch a child process: an executable written in Swift
- Receive the child process's Mach port
- Receive reflection section addresses and the address of a heap instance
of interest
- Perform field type lookup on the instance remotely (TODO)