The dependent 'value' may be marked 'nonescaping', which guarantees that the
lifetime dependence is statically enforceable. In this case, the compiler
must be able to follow all values forwarded from the dependent 'value', and
recognize all final (non-forwarded, non-escaping) use points. This implies
that `findPointerEscape` is false. A diagnostic pass checks that the
incoming SIL to verify that these use points are all initially within the
'base' lifetime. Regular 'mark_dependence' semantics ensure that
optimizations cannot violate the lifetime dependence after diagnostics.
Previously, mayRequirePackMetadata only considered whether a type
involved a pack. That failed to account for the case of outlined value
functions that require pack metadata when the type involves a pack in
its layout. Here, mayRequirePackMetadata now considers also whether the
layout corresponding to a type involves a pack.
rdar://119829826
Layers:
- FunctionConvention: AST FunctionType: results, parameters
- ArgumentConventions: SIL function arguments
- ApplyOperandConventions: applied operands
The meaning of an integer index is determined by the collection
type. All the mapping between the various indices (results,
parameters, SIL argument, applied arguments) is restricted to the
collection type that owns that mapping. Remove the concept of a
"caller argument index".
Some notes:
This is not emitted by SILGen. This is just intended to be used so I can write
SIL test cases for transfer non sendable. I did this by adding an
ActorIsolationCrossing field to all FullApplySites rather than adding it into
the type system on a callee. The reason that this makes sense from a modeling
perspective is that an actor isolation crossing is a caller concept since it is
describing a difference in between the caller's and callee's isolation. As a
bonus it makes this a less viral change.
For simplicity, I made it so that the isolation is represented as an optional
modifier on the instructions:
apply [callee_isolation=XXXX] [caller_isolation=XXXX]
where XXXX is a printed representation of the actor isolation.
When neither callee or caller isolation is specified then the
ApplyIsolationCrossing is std::nullopt. If only one is specified, we make the
other one ActorIsolation::Unspecified.
This required me to move ActorIsolationCrossing from AST/Expr.h ->
AST/ActorIsolation.h to work around compilation issues... Arguably that is where
it should exist anyways so it made sense.
rdar://118521597
* `alloc_vector`: allocates an uninitialized vector of elements on the stack or in a statically initialized global
* `vector`: creates an initialized vector in a statically initialized global
If the var is captured in a closure before it is transferred, it is not safe to
access the Sendable field since we may race on accessing the field with an
assignment to the field in another concurrency domain.
rdar://115124361
To verify if a function may read from an indirect argument, don't use AliasAnalysis.
Instead use the CalleeCache to get the list of callees of an apply instruction.
Then use a simple call-back into the swift Function to check if a callee has any relevant memory effect set.
This avoids a dependency from SIL to the Optimizer.
It fixes a linker error when building some unit tests in debug.