When a generic function has potentially Escapable outputs, those outputs
declare lifetime dependencies, which have no effect when substitution
leads to those types becoming `Escapable` in a concrete context.
This means that type substitution should canonically eliminate lifetime
dependencies targeting Escapable parameters or returns, and that
type checking should allow a function value with potentially-Escapable
lifetime dependencies to bind to a function type without those dependencies
when the target of the dependencies is Escapable.
Fixes rdar://147533059.
Rather than fixing-up in the parser, adjust the ASTScope logic such
that a `try` element in a SequenceExpr is considered as covering all
elements to the right of it. Cases where this isn't true are invalid,
and will be diagnosed during sequence folding. e.g:
```
0 * try foo() + bar()
_ = try foo() ~~~ bar() // Assuming `~~~` has lower precedence than `=`
```
This ensures we correctly handle `try` in assignment sequences, and
allows ASTGen to get the behavior for free.
rdar://132872235
This issue manifested in crashing when in Xcode one would do the Archive
workflow, and we would be missing the Distributed module types and
proceed to run into a nullpointer when faced with code like this:
```
public class TestViewModel {
public init() {}
public func onReturn() {
print("on return executed!")
}
}
```
where the name matched one of the ad hoc requirements, but we'd get null
for the protocol lookup since this does not import the distributed
module.
resolves rdar://148327936
Suppose module 'Foo' exists in the search paths and specifies user module version '1.0'.
If the first encountered 'canImport' query is unversioned:
...
Followed by a versioned one:
...
The success of the first check will record an unversioned successful canImport, which will cause the second check to evaluate to 'true', which is incorrect.
This change causes even unversioned 'canImport' checks to track and record the discovered user module version.
This patch fixes the access check for nested private C++ enums to look for the SWIFT_PRIVATE_FILEID of the enclosing C++ class, if any. Previously, the check was looking at for SWIFT_PRIVATE_FILEID on the enum decl itself (which is meaningless); that prevented nested private enum members from being accessible in Swift.
This patch also specializes the type signature of getPrivateFileIDAttrs to clarify the fact that SWIFT_PRIVATE_FILEID is not a meaningful annotation on anything other than CXXRecordDecl, because that is the only kind of decl that can assign access specifiers to its members.
rdar://148081340
Building on top of PR #79288, this update synthesizes a static factory method using the default new operator, with a call to the default constructor expression for C++ foreign reference types, and imports them as Swift initializers.
rdar://147529406
Specifically, when the scanner found a candidate which does not carry a user-specified version, it will pass '-module-can-import Foo' to compilation. During compilation, if the check is versioned but the candidate is unversioned, evaluate the check to 'true' to restore the behavior we had with implicitly-built modules.
Resolves rdar://148134993
`llvm::sys::Wait(process, /*SecondsToWait=*/0)` perform a non-blocking
`wait`. That means the plugin goes a zombie if it hasn't exited.
Set `SecondsToWait` 1 so it wait for 1 second and kill it on the time
out. Usually, when the pipe is closed, the plugins detect the EOF in
stdin and exits immediately, fo the parent process usually don't wait
for the timeout.
rdar://148110944
It doesn't seem like this is necessary anymore since we no longer
clone OverrideAttrs when checking overrides (except when
invalidating). Moreover, it's now actively wrong since accessors
introduced by macro expansions may be in different buffers than their
their storage, so checking `isBeforeInBuffer` will non-deterministically
result in the wrong source range.
Specifically:
1. I made it so that thunks from caller -> concurrent properly ignore the
isolated parameter of the thunk when calling the concurrent function.
rdar://148112362
2. I made it so that thunks from concurrent -> caller properly create a
Optional<any Actor>.none and pass that into the caller function.
rdar://148112384
3. I made it so that in cases where we are assigning an @Sendable caller to a
non-sendable caller variable, we allow for the conversion as long as the
parameters/results are sendable as well.
rdar://148112532
4. I made it so that when we generate a thunk from @execution(caller) ->
@GlobalActor, we mangle in @GlobalActor into the thunk.
rdar://148112569
5. I discovered that due to the way we handle function conversion expr/decl ref
expr, we were emitted two thunks when we assigned a global @caller function to a
local @caller variable. The result is that we would first cast from @caller ->
@concurrent and then back to @caller. The result of this would be that the
@caller function would always be called on the global queue.
rdar://148112646
I also added a bunch of basic tests as well that showed that this behavior was
broken.
Print diagnostic groups as part of the LLVM printer in the same manner as the
Swift one does, always. Make `-print-diagnostic-groups` an inert option, since we
always print diagnostic group names with the `[#GroupName]` syntax.
As part of this, we no longer render the diagnostic group name as part
of the diagnostic *text*, instead leaving it up to the diagnostic
renderer to handle the category appropriately. Update all of the tests
that were depending on `-print-diagnostic-groups` putting it into the
text to instead use the `{{documentation-file=<file name>}}`
diagnostic verification syntax.
We've been converging the implementations of educational notes and
diagnostic groups, where both provide category information in
diagnostics (e.g., `[#StrictMemorySafety]`) and corresponding
short-form documentation files. The diagnostic group model is more
useful in a few ways:
* It provides warnings-as-errors control for warnings in the group
* It is easier to associate a diagnostic with a group with
GROUPED_ERROR/GROUPED_WARNING than it is to have a separate diagnostic
ID -> mapping.
* It is easier to see our progress on diagnostic-group coverage
* It provides an easy name to use for diagnostic purposes.
Collapse the educational-notes infrastructure into diagnostic groups,
migrating all of the existing educational notes into new groups.
Simplify the code paths that dealt with multiple educational notes to
have a single, possibly-missing "category documentation URL", which is
how we're treating this.
This feature only exists as a mechanism to suppress the warning introduced in
https://github.com/swiftlang/swift/pull/75378. The RegexParser module, which is
effectively part of the standard library, declares a Swift runtime symbol and
as a result every build of the compiler and stdlib produces warnings which
there are no plans to address. Warnings that are not going to be addressed need
some way of being suppressed, and an experimental features seems like a
reasonable mechanism for this one.