This removes the "optimization" where a function type, metatype or
tuple type was split up into structural components, because it seems
that in general we need this structural type metadata again.
Similarly, this no longer tries to split up dependent concrete
conformances and instead passes the witness table in the context.
This makes the context larger potentially, but it avoids calls to
metadata access functions and swift_getWitnessTable() every time the
closure is invoked.
Previously it was testing for opened existentials specifically.
We should really teach outlining to handle local archetypes properly.
We'd have to build a generic signature for the lowered type, and that
probably means also adding requirements that are relevant to value
operations, but it would mean outlining would benefit all types, and
it would let us avoid bundling in unnecessary information from the
enclosing generic environment.
A minor side-effect of this is that we no longer bind names to
opened element type values. The names were things like \tau_1_0,
which is not very useful, especially in LLVM IR where \tau is
printed with two UTF-8 escapes.
A lot of the fixes here are adjustments to compensate in the
fulfillment and metadata-path subsystems for the recent pack
substitutions representation change. I think these adjustments
really make the case for why the change was the right one to make:
the code was clearly not considering the possibility of packs
in these positions, and the need to handle packs makes everything
work out much more cleanly.
There's still some work that needs to happen around type packs;
in particular, we're not caching them or fulfilling them as a
whole, and we do have the setup to do that properly now.
Added pack flavors of requirement kinds for metadata and witness tables.
Fixes the function signatures for variadic generic functions which
previously used %swift.type* for variadic generic parameters--those are
lists of metadata and should actually be %swift.type**.
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.
When using opaque pointers we can no longer depend on the LLVM IR type
to perform the computation. Instead compute the number while we are
building a signature.
In preparation for moving to llvm's opaque pointer representation
replace getPointerElementType and CreateCall/CreateLoad/Store uses that
dependent on the address operand's pointer element type.
This means an `Address` carries the element type and we use
`FunctionPointer` in more places or read the function type off the
`llvm::Function`.
If a foreign type conforms to a protocol, and that conformance is not
resilient, we were emitting an instantantiation function but it would
never be called because we weren't emitting the `GenericWitnessTable`
that would have contained a reference to it.
This was happening because of a missing `isSynthesizedNonUnique()` call
in `isDependentConformance()`.
rdar://97290618
We had two notions of canonical types, one is the structural property
where it doesn't contain sugared types, the other one where it does
not contain reducible type parameters with respect to a generic
signature.
Rename the second one to a 'reduced type'.
While building witness table record, let's use `hasAsync()` check on
`SILDeclRef` of the requirement instead of reaching for the underlying
declaration because the reference should be the source of truth about
`async` and other attributes.
In case of distributed thunk witness, which is always `async throws`,
the underlying declaration could be sync because it's the protocol
requirement declaration.