Instead of forcing full application of '{super,self}.init' in the parser, and installing the RebindSelf semantic expr node early, make these constraints to Sema-time checks, and parse '<expr>.init' as a regular postfix production. This is a better separation of concerns, and also opens the door to supporting 'metatype.init()' in more general expression contexts (though that part still needs some follow-up sema work).
Swift SVN r29343
If P is a protocol, calling static methods or constructors
via values of type P.Protocol makes no sense, so let's prohibit
this.
Fixes <rdar://problem/21176676>.
Swift SVN r29338
Rename existentialConformsToSelf() to existentialTypeSupported(). This
predicate is the "protocol has no Self or associated type requirements"
check, which is a looser condition than self-conformance. This was being
tested to see if the user could refer to the protocol via an existential
type.
The new existentialConformsToSelf() now checks for protocol being @objc,
and for the absence of static methods. This is used as part of the
argument type matching logic in matchType() to determine if the
existential can be bound to a generic type parameter.
The latter condition is stricter, for two reasons:
1) We allow binding existentials to multiple type parameters all sharing
the same generic type parameter T, so we don't want the user to be
able to see any static methods on T.
2) There is an IRGen limitation whereby only existentials without witness
tables can be passed in this manner.
Using the above, the representsNonTrivialGenericParameter() function
has been renamed to canBindGenericParamToExistential(). It now allows
an existential type to be bound to a generic type parameter only under
the following circumstances:
A) If the generic type parameter has no conformances, the match is allowed.
B) If the generic type parameter has at least one conformance, then all
of the conformances on the generic type parameter must be
existentialConformsToSelf() (condition 1 above), and all conformances
on the existential must be @objc (condition 2 above).
Fixes <rdar://problem/18378390> and <rdar://problem/18683843>, and lays
the groundwork for fixing a few other related issues.
Swift SVN r29337
Special-casing these as MemberRefExprs created an asymmetry
where unbound archetype instance methods (<T : P> T.f) could
not be represented. Treating class and protocol methods
uniformly also eliminates a handful of special cases around
MemberRefExpr.
SILGen's RValue and call emission peepholes now have to know
about DeclRefExprs that point to protocol methods.
Finally, generalize the diagnostic for partially applied
mutating methods to any partially applied function with an
inout parameter, since this is not supported.
Fixes <rdar://problem/20564672>.
Swift SVN r29298
- Remove unused names.
- Define IDENTIFIER in terms of IDENTIFIER_WITH_NAME.
- Adjust each name to always match the corresponding value in case.
- Add an IDENTIFIER_ macro for the common case of defining an underscored name.
- Avoid creating names with double underscores, which are technically reserved
by the C++ standard.
There are two special cases I left in here for the identifiers '_code' and
'_domain'. I didn't want to call these simply 'Id_code' and 'Id_domain' for
fear someone would try to use them as 'code' and 'domain', so I made them into
'Id_code_' and 'Id_domain_' for now.
No intended functionality change.
Swift SVN r29291
If we end up trying to form a substitution where the replacement type
is an existential and there is a conformance to a non-@objc protocol
(i.e., a conformance where a witness table is required), complain in
Sema rather than crashing in IRGen. Fixes rdar://problem/21087341, but
the existential/generic interaction is still quite broken.
Swift SVN r29133
This results in a more correct diagnostic being printed for closures with
capture lists, rather than claiming that they aren't literal closures.
Swift SVN r29058
Our implementation of partial_apply and currying is robust enough to handle these cases now. Mutating methods are still problematic since capturing would violate 'inout' semantics. (Maybe we could support 'mutating' partial applications as @noescape closures, some day.)
Swift SVN r28992
This isn't as straightforward as it should be, since EnumElementDecls aren't AbstractFunctionDecls, but luckily there's only one trivial curry level with a thin metatype parameter.
Swift SVN r28991
Instead, provide the location of the { in a closure expr to the argument formation as
part of the datastructure already used to manage implicit closure arguments in the parser.
Swift SVN r28818
- Enable 'catch is NSError' and 'catch let e as NSError {' patterns to
a) work, and b) be considered to be exhaustive catches. This enables
people to catch an error and *use* it as an NSError directly, instead
of having to do boiler-platey cases. This is particularly important
for the migrator.
- Do not warn about non-noop coersion casts (like "_ as NSError" when
matching an ErrorType), since they provide useful type adjustment to
the subpattern. Still warn on noop ones.
- Simplify CatchStmt::isSyntacticallyExhaustive to use
Pattern::isRefutablePattern. Add a FIXME, because the parser is guiding
closure "throws" inference before the pattern is type checked, which means
that it is incorrect (but only in subtle cases).
- When diagnosing pointless 'as' patterns like:
switch 4 {
case _ as Int: break
say "'as' test is always true" instead of "'is' test is always true".
Swift SVN r28774
Fix a nullptr dereference when looking for a base expression
in a member access. Remove use of Optional<T*>, it wasn't providing
any value versus nullptr checking.
Swift SVN r28648
When in an initializer, we allow setting into immutable properties
provided that the type of base in `base.member` matches that of that
initializer's containing type. This was an approximation for allowing
full access into `self` during initialization but this doesn't work when
passing in a different struct of the same type because that struct
should be still be immutable.
Check whether the base of the member access is the implicit self
parameter of the initializer before allowing mutation.
rdar://problem/19814302
Swift SVN r28634
instead of being an expression.
To the user, this has a couple of behavior changes, stemming from its non-expression-likeness.
- #available cannot be parenthesized anymore
- #available is in its own clause, not used in a 'where' clause of if/let.
Also, the implementation in the compiler is simpler and fits the model better. This
fixes:
<rdar://problem/20904820> Following a "let" condition with #available is incorrectly rejected
Swift SVN r28521
... and since they can only use required initializers (or those found
in a protocol), one can use them when constructing metatypes. Fixes
rdar://problem/20739719.
Swift SVN r28364
can make a more precise assertion that all default arguments have the
same owner.
<rdar://problem/20749423> Compiler crashed while building simple subclass code
Swift SVN r28251
optional evaluation context that produced the optional.
<rdar://problem/20377684> Oscillating fixit for optional chain calling method that returns non-optional
Swift SVN r28212
since the type might not match the return type of the function exactly
in that case (CSGen only emits a conversion constraint).
<rdar://problem/20087517> Crash when using .staticShorthand syntax with NSColor/UIColor factories
Swift SVN r28200
When semantic analysis forms a reference to a conformance that will
persist in the AST (it is "used" in the C++ odr-used sense), complete
that conformance before type checking terminates. This ensures that
the SIL optimizers have complete conformances to work with for, e.g.,
generic specialization. Fixes rdar://problem/20735544.
Swift SVN r27896
This fixes <rdar://problem/20494437> SILGen crash handling default arguments
again, and includes a fix for MiscDiagnostics to look through the generated
TupleShuffleExprs in @noescape processing (which tripped up XCTest).
This fixes <rdar://problem/16860940> QoI: Strict keyword arguments loses type sugar in calls
where we'd lose some type sugar.
This fixes sanity in the ASTs: ScalarToTupleExpr now always has consistent
types between its argument and result, so we can turn on AST Verification of it.
Swift SVN r27827
This was an ugly situation where we'd create an invalid ScalarToTuple in
a situation with default arguments, because CSApply didn't realize that the
default argument causes formation of a specific tuple kind with a single element.
There is more damage in this area, other work coming.
Swift SVN r27811
DI makes the assumption that the type of self in an initializer is always
derived from a nominal type. Now that you can put an initializer body on a
protocol, this isn't true anymore, so teach it about this.
Swift SVN r27714
Replace the 'ignoreMissing' boolean flag with a new option set type,
SubstOptions, which is easier to extend. It is not an OptionSet<>
because a follow-on commit will introduce a non-trivial option that
will require more storage.
Also eliminate the LazyResolver parameter, which is no longer
needed. Eliminate the silly TypeChecker::substType(), whose only
purpose was to provide the resolver.
Swift SVN r27656
This eliminates nonsensical recursion when working with protocol
conformances, and makes their checking more lazy. Start to improve
name lookup to deal with protocol witnesses more lazily, generalizing
the solution we had to all protocol conformances and making it more
directed. We're not done here, as the FIXMEs in the code completion
test imply: this replace-the-requirement-with-the-witness behavior
needs to be sunk down into the AST level so it also applies to
unqualified lookup, visible-decl lookup, etc.
Swift SVN r27639
We need to use the constrants from the extension, otherwise we might
pass in the wrong witness method table at the call site, among other
problems.
Fixes rdar://problem/20532214.
Swift SVN r27585
Add syntax "[#Color(...)#]" for object literals, to be used by
Playgrounds for inline color wells etc. The arguments are forwarded to
the relevant constructor (although we will probably change this soon,
since (colorLiteralRed:... blue:... green:... alpha) is kind of
verbose). Add _ColorLiteralConvertible and _ImageLiteralConvertible
protocols, and link them to the new expressions in the type checker.
CSApply replaces the object literal expressions with a call to the
appropriate protocol witness.
Swift SVN r27479
Fixes the crash in rdar://problem/20564378. In these cases, we end up
swallowing some diagnostics. That will be addressed in a subsequent
commit.
Swift SVN r27436
The post-type-checking error that was here is arguably better QoI, but it is causing ambiguities that break the non-ObjC-compatible build in the stdlib. We shouldn't even attempt these conversions if there's no runtime support to back them up.
Swift SVN r27407
Enable checking for uses of potentially unavailable APIs. There is
a frontend option to disable it: -disable-availability-checking.
This commit updates the SDK overlays with @availability() annotations for the
declarations where the overlay refers to potentially unavailable APIs. It also changes
several tests that refer to potentially unavailable APIs to use either #available()
or @availability annotations.
Swift SVN r27272
Consistently open all references into existentials into
opened-existential archetypes within the constraint solver. Then,
during constraint application, use OpenExistentialExprs to record in
the AST where an existential is opened into an archetype, then use
that archetype throughout the subexpression. This simplifies the
overall representation, since we don't end up with a mix of operations
on existentials and operations on archetypes; it's all archetypes,
which tend to have better support down the line in SILGen already.
Start simplifying the code in SILGen by taking away the existential
paths that are no longer needed. I suspect there are more
simplifications to be had here.
The rules for placing OpenExistentialExprs are still a bit ad hoc;
this will get cleaned up later so that we can centralize that
information. Indeed, the one regression in the compiler-crasher suite
is because we're not closing out an open existential along an error
path.
Swift SVN r27230