* replace unused closure parameters with '_' in stdlib source
* fold some _ closure arguments into line above
* fold more _ closure arguments into line above
Apple and the Swift community has settled on this style:
https://devforums.apple.com/message/1133616#1133616
> FWIW, we've recently decided to standardize on () -> Void
> (generally, () for parameters and Void for return types) across all of our
> documentation.
When building on a macOS host, and when `SWIFT_INCLUDE_TESTS` is specified,
the `swiftSwiftReflectionTest` target is added to all platforms.
However, this target has a dependency upon Foundation, which is not
available on non-Apple platforms.
Use `add_swift_library`'s `TARGET_SDKS` parameter and other gating
logic to ensure the target is only added for platforms that actually
have Darwin available.
Extend NSNumber bridging to cover not only `Int`, `UInt`, `Double`, and `Bool`, but all of the standard types as well. Extend the `TypePreservingNSNumber` subclass to accommodate all of these types, so that we preserve type identity for `AnyHashable` and dynamic casting of Swift-bridged NSNumbers. If a pure Cocoa NSNumber is cast, just trust that the user knows what they're doing.
This XFAILs a couple of serialization tests that attempt to build the Foundation overlay, but which don't properly handle `gyb` files.
For every struct type for which the frameworks provides an NSValue category for boxing and unboxing values of that type, provide an _ObjectiveCBridgeable conformance in the Swift overlay that bridges that struct to NSValue, allowing the structs to be used naturally with id-as-Any APIs and Cocoa container classes. This is mostly a matter of gyb-ing out boilerplate using `NSValue.init(bytes:objCType:)` to construct the instance, `NSValue.objCType` to check its type when casting, and `NSValue.getValue(_:)` to extract the unboxed value, though there are a number of special snowflake cases that need special accommodation:
- To maintain proper layering, CoreGraphics structs need to be bridged in the Foundation overlay.
- AVFoundation provides the NSValue boxing categories for structs owned by CoreMedia, but it does so using its own internal subclasses of NSValue, and these subclasses do not interop properly with the standard `NSValue` subclasses instantiated by Foundation. To do the right thing, we therefore have to let AVFoundation provide the bridging implementation for the CoreMedia types, and we have to use its category methods to do so.
- SceneKit provides NSValue categories to box and unbox SCNVector3, SCNVector4, and SCNMatrix4; however, the methods it provides do so in an unusual way. SCNVector3 and SCNVector4 are packaged into `CGRect`s and then the CGRect is boxed using `valueWithCGRect:`. SCNMatrix4 is copied into a CATransform3D, which is then boxed using `valueWithCATransform3D:` from CoreAnimation. To be consistent with what SceneKit does, use its category methods for these types as well, and when casting, check the type against the type encoding SceneKit uses rather than the type encoding of the expected type.
[test] Add a timeout to runRaceTest(). Use it to limit test AtomicInt.swift.
This cuts AtomicInt.swift's execution time from several hours to
about ten minutes on slow hardware and slow build configurations.