The name of the `TaskExecutor` protocol was recently changed to remove
underscores after the feature was accepted in Swift Evolution. An implication
of that rename is that the `buildOrdinaryTaskExecutorRef` builtin changed
the type that it expected as the argument. However, the original change
landed in the standard library which as since produced swiftinterfaces
that contain the following inlinable code:
```
@inlinable public init<E>(ordinary executor: __shared E) where E : _Concurrency._TaskExecutor {
#if $BuiltinBuildTaskExecutor
self.executor = Builtin.buildOrdinaryTaskExecutorRef(executor)
#else
fatalError("Swift compiler is incompatible with this SDK version")
#endif
}
```
When a compiler containing the protocol rename attempts to type check the
above inlinable code, it crashes because the builtin is expecting an argument
conforming to `TaskExecutor`, which doesn't exist in this version of the
standard library. The issue is that the current compiler still supports
the `$BuiltinBuildTaskExecutor` feature guard, but the builtin supported
has since changed.
To resolve this issue, we need to stop supporting the `$BuiltinBuildTaskExecutor`
feature guard and introduce a new one that is only supported by compiler versions
that contain the rename. This approach relies on nothing having adopted the
API, otherwise we would need to stage in the rename as a parallel set of APIs,
and only remove the old APIs once nothing is relying on the old _Concurrency
swiftinterfaces.
which executor for which type of setting, is consolidated and we have a
single knob we use to determine when to use dispatch as our global
executor.
Radar-Id: rdar://problem/119416196
With this deprecation emitted by the compiler some codebases that
support many old Swift versions have been forced into warnings they
cannot avoid due to the compatibility promises they made.
This removes the warning but changes no functionality.
SWIFT_STDLIB_SINGLE_THREADED_RUNTIME is too much of a blunt instrument here.
It covers both the Concurrency runtime and the rest of the runtime, but we'd
like to be able to have e.g. a single-threaded Concurrency runtime while
the rest of the runtime is still thread safe (for instance).
So: rename it to SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY and make it just
control the Concurrency runtime, then add a SWIFT_STDLIB_THREADING_PACKAGE
setting at the CMake/build-script level, which defines
SWIFT_STDLIB_THREADING_xxx where xxx depends on the chosen threading package.
This is especially useful on systems where there may be a choice of threading
package that you could use.
rdar://90776105
SWIFT_STDLIB_SINGLE_THREADED_RUNTIME is too much of a blunt instrument here.
It covers both the Concurrency runtime and the rest of the runtime, but we'd
like to be able to have e.g. a single-threaded Concurrency runtime while
the rest of the runtime is still thread safe (for instance).
So: rename it to SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY and make it just
control the Concurrency runtime, then add a SWIFT_STDLIB_THREADING_PACKAGE
setting at the CMake/build-script level, which defines
SWIFT_STDLIB_THREADING_xxx where xxx depends on the chosen threading package.
This is especially useful on systems where there may be a choice of threading
package that you could use.
rdar://90776105
The concurrency runtime now deploys back to macOS 10.15, iOS 13.0, watchOS 6.0, tvOS 13.0, which corresponds to the 5.1 release of the stdlib.
Adjust macro usages accordingly.
`SWIFT_STDLIB_SINGLE_THREADED_RUNTIME` mode has been broken for a long time.
This patch guards some includes and use of libdispatch headers so that platforms
that doesn't support libdispatch can build cooperative executor runtime.
And fixed missing implementations for cooperative mode.
The self object isn't actually a Swift object, so we can neither
do class dispatch on it nor retain it with swift_retain.
Some of the credit goes to Mike Ash on this one. All the
blame is mine, of course.
I added Builtin.buildMainActorExecutor before, but because I never
implemented it correctly in IRGen, it's not okay to use it on old
versions, so I had to introduce a new feature only for it.
The shim dispatch queue class in the Concurrency runtime is rather
awful, but I couldn't think of a reasonable alternative without
just entirely hard-coding the witness table in the runtime.
It's not ABI, at least.
- Introduce an UnownedSerialExecutor type into the concurrency library.
- Create a SerialExecutor protocol which allows an executor type to
change how it executes jobs.
- Add an unownedExecutor requirement to the Actor protocol.
- Change the ABI for ExecutorRef so that it stores a SerialExecutor
witness table pointer in the implementation field. This effectively
makes ExecutorRef an `unowned(unsafe) SerialExecutor`, except that
default actors are represented without a witness table pointer (just
a bit-pattern).
- Synthesize the unownedExecutor method for default actors (i.e. actors
that don't provide an unownedExecutor property).
- Make synthesized unownedExecutor properties `final`, and give them
a semantics attribute specifying that they're for default actors.
- Split `Builtin.buildSerialExecutorRef` into a few more precise
builtins. We're not using the main-actor one yet, though.
Pitch thread:
https://forums.swift.org/t/support-custom-executors-in-swift-concurrency/44425
Through various means, it is possible for a synchronous actor-isolated
function to escape to another concurrency domain and be called from
outside the actor. The problem existed previously, but has become far
easier to trigger now that `@escaping` closures and local functions
can be actor-isolated.
Introduce runtime detection of such data races, where a synchronous
actor-isolated function ends up being called from the wrong executor.
Do this by emitting an executor check in actor-isolated synchronous
functions, where we query the executor in thread-local storage and
ensure that it is what we expect. If it isn't, the runtime complains.
The runtime's complaints can be controlled with the environment
variable `SWIFT_UNEXPECTED_EXECUTOR_LOG_LEVEL`:
0 - disable checking
1 - warn when a data race is detected
2 - error and abort when a data race is detected
At an implementation level, this introduces a new concurrency runtime
entry point `_checkExpectedExecutor` that checks the given executor
(on which the function should always have been called) against the
executor on which is called (which is in thread-local storage). There
is a special carve-out here for `@MainActor` code, where we check
against the OS's notion of "main thread" as well, so that `@MainActor`
code can be called via (e.g.) the Dispatch library's
`DispatchQueue.main.async`.
The new SIL instruction `extract_executor` performs the lowering of an
actor down to its executor, which is implicit in the `hop_to_executor`
instruction. Extend the LowerHopToExecutor pass to perform said
lowering.
- introduce UnsafeCurrentTask
- implement Hashable, Equatable on tasks
- assume we'll have a way to get a task from sync context
- Task.Handle now has a Failure type as well
- Task.Handle.getResult