Mostly this just means adding `Musl` as a module dependency of various
things and making sure that we build things for `swift_static` even
if `SWIFT_BUILD_STATIC_STDLIB` isn't enabled.
There's also a slight difference in the declaration of `memcmp()`;
musl's declaration is more like the one we have on Darwin.
rdar://123508245
This change introduces a new compilation target platform to the Swift compiler - visionOS.
- Changes to the compiler build infrastrucuture to support building compiler-adjacent artifacts and test suites for the new target.
- Addition of the new platform kind definition.
- Support for the new platform in language constructs such as compile-time availability annotations or runtime OS version queries.
- Utilities to read out Darwin platform SDK info containing platform mapping data.
- Utilities to support re-mapping availability annotations from iOS to visionOS (e.g. 'updateIntroducedPlatformForFallback', 'updateDeprecatedPlatformForFallback', 'updateObsoletedPlatformForFallback').
- Additional tests exercising platform-specific availability handling and availability re-mapping fallback code-path.
- Changes to existing test suite to accomodate the new platform.
Adds derivatives to already existing initializers that allow converting between floating point type. For example converting a Float to a Double.
Co-authored-by: Jaap Wijnen <jaap@passivelogic.com>
Optional's `init_enum_data_addr` and `inject_enum_addr` instructions are generated in presence of non-loadable Optional values. The compiler used to treat these instructions as inactive, and this resulted in silent run-time
issues described in #64223.
The patch marks `init_enum_data_addr` as "active" if its Optional operand is also active, and in PullbackCloner we differentiate through it and the related `inject_enum_addr`.
However, we only determine this relation in simple cases when both instructions are in the same block. There is no def-use relation between them (both take the same Optional operand), so if there is more than one set of instructions
operating on the same Optional, or there is some control flow, we currently bail out.
In PullbackCloner, we walk over instructions in reverse order and start from `inject_enum_addr` and its `Optional<Wrapped>.TangentVector` operand. Assuming that is is already initialized, we emit an `unchecked_take_enum_data_addr` and set it as the adjoint buffer of `init_enum_data_addr`. The Optional value is
invalidated, and we have to destroy the enum data address later when we reach `init_enum_data_addr`.
This patch goes through and adds zippering and the swift module
dependencies to a bunch of pieces of the swift runtimes. Here's to
hoping I hit everything that needed to be hit. :D
With this patch, I'm seeing the appropriate modules under
lib/swift/maccatalyst, so things seem to be working right.
This allows automatic differentiation of concrete calls to math functions operating on `Double`. Such calls were not differentiable because the concrete math functions were imported from C, not the generic ones defined in Swift. The fix is to define derivatives for these C functions. `test/AutoDiff/stdlib/tgmath_derivatives.swift.gyb` was modified to test the new functions.
This change adds support for WASI in stdlib tests. Some tests that expect a crash to happen had to be disabled, since there's currently no way to observe such crash from a WASI host.
The SIL type lowering logic for AutoDiff gets the substituted generic signature
mixed up with the invocation generic signature, so it tries to ask questions
about DependentMemberTypes in a signature with no requirements. This triggers
assertions when the requirement machine is enabled.
Disable the requirement machine until this is fixed.
Implement correct zero tangent vector, i.e. empty array [], handling during the backward pass of Array.DifferentiableView.+ and move methods. The precondition is no longer triggered by .zero/empty arrays.
Fixes SR-14297
'AnyDifferentiable' and 'AnyDerivative' should conform to 'CustomReflectable' to prevent leaking implementation details. The mirror should reflect its underlying value directly.
Resolves rdar://75496334.
Rename `move(along:)` to `move(by:)` based on the proposal feedback. The main argument for the change is that tangent vectors specify both a direction and a magnitude, whereas `along:` does not indicate that `self` is being moved by the specified magnitude.
Compiler:
- Add `Forward` and `Reverse` to `DifferentiabilityKind`.
- Expand `DifferentiabilityMask` in `ExtInfo` to 3 bits so that it now holds all 4 cases of `DifferentiabilityKind`.
- Parse `@differentiable(reverse)` and `@differentiable(_forward)` declaration attributes and type attributes.
- Emit a warning for `@differentiable` without `reverse`.
- Emit an error for `@differentiable(_forward)`.
- Rename `@differentiable(linear)` to `@differentiable(_linear)`.
- Make `@differentiable(reverse)` type lowering go through today's `@differentiable` code path. We will specialize it to reverse-mode in a follow-up patch.
ABI:
- Add `Forward` and `Reverse` to `FunctionMetadataDifferentiabilityKind`.
- Extend `TargetFunctionTypeFlags` by 1 bit to store the highest bit of differentiability kind (linear). Note that there is a 2-bit gap in `DifferentiabilityMask` which is reserved for `AsyncMask` and `ConcurrentMask`; `AsyncMask` is ABI-stable so we cannot change that.
_Differentiation module:
- Replace all occurrences of `@differentiable` with `@differentiable(reverse)`.
- Delete `_transpose(of:)`.
Resolves rdar://69980056.
`valueWithDerivative(of:)` and `valueWithGradient(of:)` are the curried version of `valueWithDerivative(at:in:)` and `valueWithGradient(at:in:)`, respectively. They are not included the proposal and are not being used by any client that I know of. This patch removes them.
* Add differentiation benchmarks.
* Make install name of _Differentiation be @rpath/libswift_Differentiation.dylib.
Co-authored-by: Marc Rasi <marcrasi@google.com>
In derivatives of loops, no longer allocate boxes for indirect case payloads. Instead, use a custom pullback context in the runtime which contains a bump-pointer allocator.
When a function contains a differentiated loop, the closure context is a `Builtin.NativeObject`, which contains a `swift::AutoDiffLinearMapContext` and a tail-allocated top-level linear map struct (which represents the linear map struct that was previously directly partial-applied into the pullback). In branching trace enums, the payloads of previously indirect cases will be allocated by `swift::AutoDiffLinearMapContext::allocate` and stored as a `Builtin.RawPointer`.
This replaces swiftMSVCRT with swiftCRT. The big difference here is
that the `visualc` module is no longer imported nor exported. The
`visualc` module remains in use for a singular test wrt availability,
but this should effectively remove the need for the `visualc` module.
The difference between the MSVCRT and ucrt module was not well
understood by most. MSVCRT provided ucrt AND visualc, combining pieces
of the old MSVCRT and the newer ucrt. The ucrt module is what you
really wanted most of the time, however, would need to use MSVCRT for
the convenience aliases for type-generic math and the deprecated math
constants.
Unfortunately, we cannot shadow the `ucrt` module and create a Swift SDK
overlay for ucrt as that seems to result in circular dependencies when
processing the `_Concurrency` module.
Although this makes using the C library easier for most people, it has a
more important subtle change: it cleaves the dependency on visualc.
This means that this enables use of Swift without Visual Studio for the
singular purpose of providing 3 header files. Additionally, it removes
the need for the installation of 2 of the 4 support files. This greatly
simplifies the deployment process on Windows.
This effectively reverts #31183 -- we need to match the install name convention of the other stdlib libraries.
From the review feedback:
> The right way to load the stdlib & runtime libraries from a custom toolchain is to set `DYLD_LIBRARY_PATH` when executing the generated binary. This is how we run tests against the just-built libraries and this is how downloadable toolchain snapshots are currently configured in Xcode -- see #33178
Adds forward mode support for `apply` instruction with `inout` arguments.
Example of supported code:
```
func add(_ x: inout Float, _ y: inout Float) -> Float {
var result = x
result += y
return result
}
print(differential(at: 1, 1, in: add)(1, 1)) // prints "2"
```
Make `Optional` conditionally conform to `Differentiable` when the `Wrapped` type does.
`Optional.TangentVector` is a wrapper around `Wrapped.TangentVector?`.
Also, fix `Array.TangentVector.zeroTangentVectorInitializer`.
Resolves TF-1301.
LLVM doesn't have a stable ABI for Float16 on x86 yet; we're working with Intel to get that fixed, but we don't want to make the type available on macOS until a stable ABI is actually available, because we'd break binaries compiled before any calling convention changes if we do.