* Import __counted_by for function return values
Instead of simply passing a parameter index to _SwiftifyInfo, the
_SwiftifyExpr enum is introduced. It currently has two cases:
- .param(index: Int), corresponding to the previous parameter index
- .return, corresponding to the function's return value.
ClangImporter is also updated to pass this new information along to
_SwiftifyImport, allowing overloads with buffer pointer return types to
be generated. The swiftified return values currently return Span when
the return value is marked as nonescaping, despite this not being sound.
This is a bug that will be fixed in the next commit, as the issue is
greater than just for return values.
* Fix Span variant selection
There was an assumption that all converted pointers were either
converted to Span-family pointers, or UnsafeBufferPointer-family
pointers. This was not consistently handled, resulting in violating the
`assert(nonescaping)` assert when the two were mixed. This patch removes
the Variant struct, and instead each swiftified pointer separately
tracks whether it should map to Span or UnsafeBufferPointer.
This also fixes return pointers being incorrectly mapped to Span when
marked as nonescaping.
Fixes the immediate problem, but the presence of demangling code in the
runtime means that we'll need a follow-up to fix the compiler so that it
doesn't try to use the demangler to materialize metadata for function types
that have both isolation and a sending result.
rdar://142443925
We have some problems on Linux where Glibc pulls in `<elf.h>` and then
we end up with conflicting definitions. Fix by using C++ interop and
putting our definitions into a namespace.
rdar://137201928
When building the standard library statically on Windows, we should not
use any __declspec(dllimport) or __declspec(dllexport) on the runtime
functions or data. Furthermore, we should internalise all of the
standard library functions so that they are not re-exported if used to
build a shared library. The code generation changes required for this
are easier to identify once a static SDK is available for Windows.
In the documentation for the `isLess(than:)` and `isLessThanOrEqualTo(_:)`
methods, a code sample isn't being formatted correctly due to it directly
following an unordered list. This change adds an additional message that
introduces the code sample, separating it from the list and allowing
the correct formatting to be applied.
This fixes a build warning:
```
swift/stdlib/public/Cxx/CxxDictionary.swift:168:9: warning: variable 'iter' was never mutated; consider changing to 'let' constant
```
This is a preliminary PR to transform nonescaping std::span parameters
to Swift's Span type in safe wrappers. To hook this up with
ClangImporter, we will need generalize the noescape attribute to
non-pointer types (PR is already in review). To transform potentially
escaping spans and spans in the return position, a follow-up PR will
add lifetime annotation support. This is a building block towards
rdar://139074571.
Under strict concurrency and memory safety, uses of `@unchecked
Sendable` conformances are considered unsafe. Diagnose the use sites,
not the declaration site.
* Make pointer bounds non-experimental
* Rename @PointerBounds to @_SwiftifyImport
* Rename filenames containing PointerBounds
* Add _PointerParam exception to stdlib ABI test
* Add _PointerParam to stdlib API changes
* Rename _PointerParam to _SwiftifyInfo
CxxSpan is trivial, but not immortal.
This initializer is diagnosed with an error after enabling trivial dependence
enforcement. Correct this with an _overrideLifetime call. This could be avoided
if we had a another way to tell the compiler that CxxSpan.__dataUnsafe()
produced a pointer with the same effective lifetime as the CxxSpan.