This relands commit 45d4648bdb while ensuring that
sanityCheckCachedType uses the exact same condition (now factored into a helper
function) as createType() to determine whether a type is sized or not.
rdar://143833326
`ReadOnly, ArgMemOnly` previously meant `can only read argument memory`.
But with the rebranch changes, this became `(can only read *all* memory)
and (can read or write argument memory)`. Use `ArgMemReadOnly` for this
instead.
To expand on this, these attributes (prior to memory effects) used to be
split into two. There was the *kind* of access, eg.
```
readnone
readonly
writeonly
```
and the accessed *location*, eg.
```
argmemonly
inaccessiblememonly
inaccessiblemem_or_argmemonly
```
So `RuntimeFunctions.def` would use `ReadOnly, ArgMemOnly` to mean `can
only read argument memory`.
In the previous rebranch commits, this was changed such that `ReadOnly`
mapped to `MemoryEffectsBase::readOnly()` and `ArgMemOnly` to
`MemoryEffectsBase::argMemOnly()`.
And there lies the issue -
- `MemoryEffectsBase::readOnly()` == `MemoryEffectsBase(Ref)` ie. all
locations can only read
- `MemoryEffectsBase::argMemOnly()` == `MemoryEffectsBase(ArgMem,
ModRef)`, ie. can only access argument memory
But then OR'ing those together this would become:
```
ArgMem: ModRef, InaccessibleMem: Ref, Other: Ref
```
rather than the previously intended:
```
ArgMem: Ref, InaccessibleMem: NoModRef, Other: NoModRef
```
In preparation for moving to llvm's opaque pointer representation
replace getPointerElementType and CreateCall/CreateLoad/Store uses that
dependent on the address operand's pointer element type.
This means an `Address` carries the element type and we use
`FunctionPointer` in more places or read the function type off the
`llvm::Function`.
Most of the changes fall into a few categories:
* Replace explicit "x86_64" with %target-cpu in lit tests
* Cope with architecture differences in IR/asm/etc. macOS-specific tests
This mechanism is used for imported functions with bodies synthesized
by the ClangImporter, as well as on-demand accessors synthesized when
required for a protocol conformance (eg, a _read accessor, or a
_modify on a property whose opaque access pattern doesn't use a
_modify, such as an @objc dynamic property).
Previously this was intertwined with the 'delayed function' mechanism,
which is similar, but used for a different case -- implicit functions
inside the same translation unit.
Untangle these to allow further simplifications.
These line numbers are consumed by LLDB and stored in the Declaration object,
but as far as I can tell no user-facing feature relies on this.
Removing the line number can reduce the churn for incremental builds
significantly, since whitespace changes in one file may trigger a recompilation
of any file that uses a type declared below the whitespace change.
<rdar://problem/63156560>
When a method is called with fewer than two parameter lists,
transform it into a fully-applied call by wrapping it in a
closure.
Eg,
Foo.bar => { self in { args... self.bar(args...) } }
foo.bar => { self in { args... self.bar(args...) } }(self)
super.bar => { args... in super.bar(args...) }
With this change, SILGen only ever sees fully-applied calls,
which will allow ripping out some code.
This new way of doing curry thunks fixes a long-standing bug
where unbound references to protocol methods did not work.
This is because such a reference must open the existential
*inside* the closure, after 'self' has been applied, whereas
the old SILGen implementation of curry thunks really wanted
the type of the method reference to match the opened type of
the method.
A follow-up cleanup will remove the SILGen curry thunk
implementation.
Fixes rdar://21289579 and https://bugs.swift.org/browse/SR-75.
Just as with conformances, we can detect that a delayed function
needs to be added to the queue from 'first principles' rather than
walking the ExternalDefinitions list.
This completely eliminates the ExternalDefinitions walk from SILGen,
which has several advantages:
- It fixes a source of quadratic behavior. In batch mode, type checking
produces a list of external definitions shared across all primary
files. Then, SILGen runs once per primary file, building a delayed
emission map every time.
- It allows SILGen to emit external definitions which only come into
existence as a result of lazy conformance checking. Previously,
anything that was added after SILGen performed its walk over the
external definitions list would not be emitted.
It would be nice to query the clang::SourceManager for the source
location of the clang::Decl in IRGenDebugInfo, but module out-of-date
rebuilds may unload previously loaded clang::Modules and thus also
invalidate source locations pointed to, leading to a use-after-free
here. If this functionality is desired, the source location must be
captured by ClangImporter and stored on the side.
LLDB does not actually make use of this information for non-C++ types
(it is really helpful with debugging the debug info itself, though),
so we can avoid the potential use-after-free and crash by not doing it.
<rdar://problem/48509051>
Now that we're never relatively addressing an Objective-C class reference,
stop emitting them as file-local (by eliminating the \01l_ prefix). This
is both a minor optimization and also a way to ensure that things will
break more consistently if a problem remains.
Currently ignored, but this will allow future compilers to pass down source location information for cast
failure runtime errors without backward deployment constraints.
These functions don't accept local variable heap memory, although the names make it sound like they work on anything. When you try, they mistakenly identify such things as ObjC objects, call through to the equivalent objc_* function, and crash confusingly. This adds Object to the name of each one to make it more clear what they accept.
rdar://problem/37285743
While the compiler can bridge C block types to Swift function types,
the Swift runtime cannot. Don't bridge block types to Swift function
types in Objective-C generic arguments, so
NSArray<some-block-type>
will get imported as
[@convention(block) (...) -> Whatever]
rather than
[(...) -> Whatever]
Fixes rdar://problem/40879067 in a fairly narrow way; the Clang
importer's approach to adjusting types based on context needs a
cleanup, but this is the safe, localized fix suitable for 4.2.
When importing @compatibility_alias declarations check if underlying declaration
is generic and if so, forward generic environment and generic parameters (if any)
to newly created typealias declaration, otherwise there is going to be a mismatch
between type associated with typealias and its declaration which leads to crashes.
Resolves: rdar://problem/39849926
I am going to leave in the infrastructure around this just in case. But there is
no reason to keep this in the tests themselves. I can always just revert this
and I don't think merge conflicts are likely due to previous work I did around
the tooling for this.
Stop creating ImplicitlyUnwrappedOptional<T> so that we can remove it
from the type system.
Enable the code that generates disjunctions for Optional<T> and
rewrites expressions based on the original declared type being 'T!'.
Most of the changes supporting this were previously merged to master,
but some things were difficult to merge to master without actually
removing IUOs from the type system:
- Dynamic member lookup and dynamic subscripting
- Changes to ensure the bridging peephole still works
Past commits have attempted to retain as much fidelity with how we
were printing things as possible. There are some cases where we still
are not printing things the same way:
- In diagnostics we will print '?' rather than '!'
- Some SourceKit and Code Completion output where we print a Type
rather than Decl.
Things like module printing via swift-ide-test attempt to print '!'
any place that we now have Optional types that were declared as IUOs.
There are some diagnostics regressions related to the fact that we can
no longer "look through" IUOs. For the same reason some output and
functionality changes in Code Completion. I have an idea of how we can
restore these, and have opened a bug to investigate doing so.
There are some small source compatibility breaks that result from
this change:
- Results of dynamic lookup that are themselves declared IUO can in
rare circumstances be inferred differently. This shows up in
test/ClangImporter/objc_parse.swift, where we have
var optStr = obj.nsstringProperty
Rather than inferring optStr to be 'String!?', we now infer this to
be 'String??', which is in line with the expectations of SE-0054.
The fact that we were only inferring the outermost IUO to be an
Optional in Swift 4 was a result of the incomplete implementation of
SE-0054 as opposed to a particular design. This should rarely cause
problems since in the common-case of actually using the property rather
than just assigning it to a value with inferred type, we will behave
the same way.
- Overloading functions with inout parameters strictly by a difference
in optionality (i.e. Optional<T> vs. ImplicitlyUnwrappedOptional<T>)
will result in an error rather than the diagnostic that was added
in Swift 4.1.
- Any place where '!' was being used where it wasn't supposed to be
allowed by SE-0054 will now treat the '!' as if it were '?'.
Swift 4.1 generates warnings for these saying that putting '!'
in that location is deprecated. These locations include for example
typealiases or any place where '!' is nested in another type like
`Int!?` or `[Int!]`.
This commit effectively means ImplicitlyUnwrappedOptional<T> is no
longer part of the type system, although I haven't actually removed
all of the code dealing with it yet.
ImplicitlyUnwrappedOptional<T> is is dead, long live implicitly
unwrapped Optional<T>!
Resolves rdar://problem/33272674.
* Remove RegisterPreservingCC. It was unused.
* Remove DefaultCC from the runtime. The distinction between C_CC and DefaultCC
was unused and inconsistently applied. Separate C_CC and DefaultCC are
still present in the compiler.
* Remove function pointer indirection from runtime functions except those
that are used by Instruments. The remaining Instruments interface is
expected to change later due to function pointer liability.
* Remove swift_rt_ wrappers. Function pointers are an ABI liability that we
don't want, and there are better ways to get nonlazy binding if we need it.
The fully custom wrappers were only needed for RegisterPreservingCC and
for optimizing the Instruments function pointers.
These aren't clang::TypedefNameDecls, but they should be treated like
them. There's not a great way to test this because the imported type
is a typealias and therefore not canonical, but fortunately debug info
preserves sugar.
Don't tail call objc_retainAutoreleasedReturnValue on x86_64. The epilogue code
before the tail jump blocks the autoreleased return optimization on x86_64
which looks for the call after the return.
callq 0x01ec08 ; symbol stub for: objc_msgSend
movq %rax, %rdi
popq %rbp ;<== Blocks the handshake from objc_autoreleaseReturnValue
jmp 0x01ec20 ; symbol stub for: objc_retainAutoreleasedReturnValue
This is a small code size win, and also gives us some abstraction so that future cooperative ObjC compilers/runtimes might be able to interoperate ObjC class objects with Swift type metadata efficiently than they currently are in the fragile Swift runtime.
While I'm here, I also noticed that swift_getObjCClassMetadata was unnecessarily getting exposed in non-ObjC-interop runtime builds, so I fixed that as well.