Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
Find all the usages of `--enable-experimental-feature` or
`--enable-upcoming-feature` in the tests and replace some of the
`REQUIRES: asserts` to use `REQUIRES: swift-feature-Foo` instead, which
should correctly apply to depending on the asserts/noasserts mode of the
toolchain for each feature.
Remove some comments that talked about enabling asserts since they don't
apply anymore (but I might had miss some).
All this was done with an automated script, so some formatting weirdness
might happen, but I hope I fixed most of those.
There might be some tests that were `REQUIRES: asserts` that might run
in `noasserts` toolchains now. This will normally be because their
feature went from experimental to upcoming/base and the tests were not
updated.
Instead, use the `%target-swift-5.1-abi-triple` substitution to compile the tests
for deployment to the minimum OS versions required for use of _Concurrency APIs.
It lowers let property accesses of classes.
Lowering consists of two tasks:
* In class initializers, insert `end_init_let_ref` instructions at places where all let-fields are initialized.
This strictly separates the life-range of the class into a region where let fields are still written during
initialization and a region where let fields are truly immutable.
* Add the `[immutable]` flag to all `ref_element_addr` instructions (for let-fields) which are in the "immutable"
region. This includes the region after an inserted `end_init_let_ref` in an class initializer, but also all
let-field accesses in other functions than the initializer and the destructor.
This pass should run after DefiniteInitialization but before RawSILInstLowering (because it relies on `mark_uninitialized` still present in the class initializer).
Note that it's not mandatory to run this pass. If it doesn't run, SIL is still correct.
Simplified example (after lowering):
bb0(%0 : @owned C): // = self of the class initializer
%1 = mark_uninitialized %0
%2 = ref_element_addr %1, #C.l // a let-field
store %init_value to %2
%3 = end_init_let_ref %1 // inserted by lowering
%4 = ref_element_addr [immutable] %3, #C.l // set to immutable by lowering
%5 = load %4
This means that:
1. In test cases where minimal is the default (swift 5 without
-warn-concurrency), I added RUN lines for targeted, complete, and complete +
sns.
2. In test cases where complete is the default (swift 6, -warn-concurrency,
specified complete with -strict-concurrency), I added a send non-sendable run
line.
In each of these cases, I added additional expected-* lines as appropriate so
the tests can compile in each mode successfully.
In case of `var` initializations, SILGen creates a dynamic begin/end_access pair around the initialization store.
If it's an initialization (and not a re-assign) it's guanranteed that it's an exlusive access and we can convert the access to an `[init] [static]` access.
https://github.com/apple/swift/issues/66496
This patch updates the `actor class` spelling to `actor` in almost all
of the tests. There are places where I verify that we sanely handle
`actor` as an attribute though. These include:
- test/decl/class/actor/basic.swift
- test/decl/protocol/special/Actor.swift
- test/SourceKit/CursorInfo/cursor_info_concurrency.swift
- test/attr/attr_objc_async.swift
- test/ModuleInterface/actor_protocol.swift
It would be more abstractly correct if this got DI support so
that we destroy the member if the constructor terminates
abnormally, but we can get to that later.