SymbolGraph generation iterating over llvm::DenseSet, which makes the
symbols and relationship fields appear in non-deterministic ordering.
Switch to use llvm::SetVector to preserve the insertion order from
SourceEntityWalker to make order deterministic.
Resolves: https://github.com/swiftlang/swift/issues/59602
(cherry picked from commit dfa4a27ec8)
Use a null diagnostic consumer in the deterministic verify instance. The
constraint system will skip work if there are no consumer in the
diagnostic engine. Use a null consumer to make sure the same amount of
work is done for two runs.
Make sure the traversal order for classMembers in deterministic in the
mdoule by sorting them first.
Also fix the comparsion function for `DeclName` to make sure there
aren't two DeclNames with different OpaquePointer can be evaluated to
equal.
rdar://147513165
Fix the non-deterministic .swiftdeps output. In contrary to the comments
in the `FineGrainedDependencies.h`, the non-determinism is not because
of the use of unordered_* data structure there. Those data structures
are not traversed so removing all the unused traversing methods to avoid
the confusion.
The true reason for the non-determinism is all the DenseSet in the
Evaluator dependency tracking, that causes the FineGrainedDependencies
to see arbitrary ordering. Use `SetVector` instead to keep track of the
insertion order to make dependency output to be deterministic.
rdar://104876331
Instead, each scan's 'ModuleDependenciesCache' will hold all of the data corresponding to discovered module dependencies.
The initial design presumed the possibility of sharing a global scanning cache amongs different scanner invocations, possibly even different concurrent scanner invocations.
This change also deprecates two libSwiftScan entry-points: 'swiftscan_scanner_cache_load' and 'swiftscan_scanner_cache_serialize'. They never ended up getting used, and since this code has been largely stale, we are confident they have not otherwise had users, and they do not fit with this design.
A follow-up change will re-introduce moduele dependency cache serialization on a per-query basis and bring the binary format up-to-date.
Add a flag `finalized` to indicate that a module entry in the dependency
cache is finalized and no longer needs to be updated. This prevents the
command-line flags from dependency inputs get added multiple times on
re-scan with the same service.
While during normal compilation, adding the same command-line flags
multiple times are fine, it is bad for caching builds as a new
compilation cache key needs to be computed every time.
Using a virutal output backend to capture all the outputs from
swift-frontend invocation. This allows redirecting and/or mirroring
compiler outputs to multiple location using different OutputBackend.
As an example usage for the virtual outputs, teach swift compiler to
check its output determinism by running the compiler invocation
twice and compare the hash of all its outputs.
Virtual output will be used to enable caching in the future.