This adjusts the runtime function declaration handling to track the
owning module for the well known functions. This allows us to ensure
that we are able to properly identify if the symbol should be imported
or not when building the shared libraries. This will require a
subsequent tweak to allow for checking for static library linkage to
ensure that we do not mark the symbol as DLLImport when doing static
linking.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
When building the label for the IAT synthetic, we need to pre-decorate
the symbol before we apply the synthetic symbol prefix lest we end up
placing the user-label prefix over the synthetic symbol rather than the
actual symbol. This is required to correctly resolve symbols when
building the standard library for x86.
When we generate code that asks for complete metadata for a fully concrete specific type that
doesn't have trivial metadata access, like `(Int, String)` or `[String: [Any]]`,
generate a cache variable that points to a mangled name, and use a common accessor function
that turns that cache variable into a pointer to the instantiated metadata. This saves a bunch
of code size, and should have minimal runtime impact, since the demangling of any string only
has to happen once.
This mostly just works, though it exposed a couple of issues:
- Mangling a type ref including objc protocols didn't cause the objc protocol record to get
instantiated. Fixed as part of this patch.
- The runtime type demangler doesn't correctly handle retroactive conformances. If there are
multiple retroactive conformances in a process at runtime, then even though the mangled string
refers to a specific conformance, the runtime still just picks one without listening to the
mangler. This is left to fix later, rdar://problem/53828345.
There is some more follow-up work that we can do to further improve the gains:
- We could improve the runtime-provided entry points, adding versions that don't require size
to be cached, and which can handle arbitrary metadata requests. This would allow for mangled
names to also be used for incomplete metadata accesses and improve code size of some generic
type accessors. However, we'd only be able to take advantage of the new entry points in
OSes that ship a new runtime.
- We could choose to always symbolic reference all type references, which would generally reduce
the size of mangled strings, as well as make runtime demangling more efficient, since it wouldn't
need to hit the runtime caches. This would however require that we be able to handle symbolic
references across files in the MetadataReader in order to avoid regressing remote mirror
functionality.
The layouts of resilient value types shipped in the Swift 5 standard library
x and overlays will forever be frozen in time for backward deployment to old
Objective-C runtimes. This PR ensures that even if the layouts of these types
evolve in the future, binaries built to run on the old runtime will continue
to lay out class instances in a manner compatible with Swift 5.
Fixes <rdar://problem/45646886>.
On Windows the image format does not support cross-image absolute
data symbol references. One case where we emit these is in class
metadata, because the value witness table always points at the
value witness table for Builtin.NativeObject, defined in the
runtime.
Instead, fill in the value witness table at runtime when doing
singleton metadata initialization.
Another change that will come later is to force use of singleton
metadata initialization on Windows, even if the class is otherwise
completely fixed.
The metadata reference to the pre-exsting VWT cannot be supported on PE/COFF
due to the direct reference to a value in an external module that is in
static data (the model requires indirecting through memory). Always
force the lazy initialization for the metadata on such platforms.
This requires a secondary change - to initialize the VWT as well. This
is ideally moved into the runtime where we can do this uniformly.
This includes global generic and non-generic global access
functions, protocol associated type access functions,
swift_getGenericMetadata, and generic type completion functions.
The main part of this change is that the functions now need to take
a MetadataRequest and return a MetadataResponse, which is capable
of expressing that the request can fail. The state of the returned
metadata is reported as an second, independent return value; this
allows the caller to easily check the possibility of failure without
having to mask it out from the returned metadata pointer, as well
as allowing it to be easily ignored.
Also, change metadata access functions to use swiftcc to ensure that
this return value is indeed returned in two separate registers.
Also, change protocol associated conformance access functions to use
swiftcc. This isn't really related, but for some reason it snuck in.
Since it's clearly the right thing to do, and since I really didn't
want to retroactively tease that back out from all the rest of the
test changes, I've left it in.
Also, change generic metadata access functions to either pass all
the generic arguments directly or pass them all indirectly. I don't
know how we ended up with the hybrid approach. I needed to change all
the code-generation and calls here anyway in order to pass the request
parameter, and I figured I might as well change the ABI to something
sensible.
There is no GOT on PE/COFF. However, the IAT entries serve the same
purpose. Use the synthetic symbol which will be initialized externally
by the loader to compute the address. This allows for cross-module
protocol references on Windows.
* Remove RegisterPreservingCC. It was unused.
* Remove DefaultCC from the runtime. The distinction between C_CC and DefaultCC
was unused and inconsistently applied. Separate C_CC and DefaultCC are
still present in the compiler.
* Remove function pointer indirection from runtime functions except those
that are used by Instruments. The remaining Instruments interface is
expected to change later due to function pointer liability.
* Remove swift_rt_ wrappers. Function pointers are an ABI liability that we
don't want, and there are better ways to get nonlazy binding if we need it.
The fully custom wrappers were only needed for RegisterPreservingCC and
for optimizing the Instruments function pointers.
On architectures where the calling convention uses the same argument register as
return register this allows the argument register to be live through the calls.
We use LLVM's 'returned' attribute on the parameter to facilitate this.
We used to perform this optimization via an optimization pass. This was ripped
out some time ago around commit 955e4ed652.
By using LLVM's 'returned' attribute on swift_*retain, we get the same
optimization from the LLVM backend.
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563
A witness table is dead if it is not used outside the module (private/internal) and it’s not used by any instruction or other witness table in the module.
Also the meta-type of the conforming type must not escape, because it’s possible to test any opaque type if it conforms to a protocol.
rdar://problem/23026019
Swift uses rt_swift_* functions to call the Swift runtime without using dyld's stubs. These functions are renamed to swift_rt_* to reduce namespace pollution.
rdar://28706212
We have no need for the other LLVM code generators (after all the main principle
of this smoke test is to only text X86 on macOS).
To implement this I had to split a couple of IRGen tests that involved multiple
code generator into multiple tests so I could use different REQUIRES lines. This
would be a nice feature to add to lit.
Add initial support for modelling DLL Storage semantics for global values. This
is needed to support the indirect addressing mechanism used on Windows.