Importing these annotations were behind the LifetimeDependence
experimental flag. However, this feature flag is intended to guard the
use of @lifetime annotations on the Swift side and lifetime inference.
The checking of imported lifetime contracts should work even when this
flag is off. Removing the flag from the importer caused some fallout.
This was mostly due to calling getInterfaceType functions before the
import of some Swift declarations were fully done so the code was
slightly improved to make decisions only based on the C++ types.
There was also a crash when on-member functions imported as methods into
Swift. That is worked around in this PR.
There is one last feature check that we cannot remove yet, we generate
@lifetime annotations in the SwiftifyImport macro.
ClangImporter can now import non-public members as of be73254cdc and 66c2e2c52b, but doing so triggers some latent ClangImporter bugs in projects that don't use or need those non-public members.
This patch introduces a new experimental feature flag, ImportNonPublicCxxMembers, that guards against the importation of non-public members while we iron out those latent issues. Adopters of the SWIFT_PRIVATE_FILEID feature introduced in bdf22948ce can enable this flag to opt into importing private members they wish to access from Swift.
rdar://145569473
Unfortunately, Unsafe*Pointer types do not support non-escapable
pointees so we do not really have anything to map these types to at the
moment. Previously, importing such code resulted in crashes.
rdar://145800679
With the acceptance of SE-0458, allow the use of unsafe expressions, the
@safe and @unsafe attributes, and the `unsafe` effect on the for..in loop
in all Swift code.
Introduce the `-strict-memory-safety` flag detailed in the proposal to
enable strict memory safety checking. This enables a new class of
feature, an optional feature (that is *not* upcoming or experimental),
and which can be detected via `hasFeature(StrictMemorySafety)`.
This patch is follow-up work from #78942 and imports non-public members,
which were previously not being imported. Those members can be accessed
in a Swift file blessed by the SWIFT_PRIVATE_FILEID annotation.
As a consequence of this patch, we are also now importing inherited members
that are inaccessible from the derived classes, because they were declared
private, or because they were inherited via nested private inheritance. We
import them anyway but mark them unavailable, for better diagnostics and to
(somewhat) simplify the import logic for inheritance.
Because non-public base class members are now imported too, this patch
inflames an existing issue where a 'using' declaration on an inherited member
with a synthesized name (e.g., operators) produces duplicate members, leading
to miscompilation (resulting in a runtime crash). This was not previously noticed
because a 'using' declaration on a public inherited member is not usually
necessary, but is a common way to expose otherwise non-public members.
This patch puts in a workaround to prevent this from affecting the behavior
of MSVC's std::optional implementation, which uses this pattern of 'using'
a private inherited member. That will be fixed in a follow-up patch.
Follow-up work is also needed to correctly diagnose ambiguous overloads
in cases of multiple inheritance, and to account for virtual inheritance.
rdar://137764620
This patch introduces an a C++ class annotation, SWIFT_PRIVATE_FILEID,
which will specify where Swift extensions of that class will be allowed
to access its non-public members, e.g.:
class SWIFT_PRIVATE_FILEID("MyModule/MyFile.swift") Foo { ... };
The goal of this feature is to help C++ developers incrementally migrate
the implementation of their C++ classes to Swift, without breaking
encapsulation and indiscriminately exposing those classes' private and
protected fields.
As an implementation detail of this feature, this patch introduces an
abstraction for file ID strings, FileIDStr, which represent a parsed pair
of module name/file name.
rdar://137764620
After PR #79424 was merged the compiler proper is doing inference on
what C++ types should be considered unsafe. Remove the duplicated (and
slightly divergent) logic from the importer as we no longer need it and
we should have a consistent view of what is considered unsafe. The only
divergence left is the old logic that renames some methods to have
"Unsafe" in their names. In the future, we want to get rid of this
behavior (potentially under a new interop version).
SafeInterop was guarding whether we import certain foreign types as
unsafe. Since these attrbutes are only considered when an opt-in strict
language mode is on, this PR removes this feature flag. We still rely on
the presence of the AllowUnsafeAttribute flag to add the unsafe
attributes to the imported types and functions.
C++ code can return values that depend on the storage that backs the
references that were passed in as argument. Thus, swift should not
introdue temporary copies of that storage before invoking those
functions as they could result in lifetime issues.
Zero sized fields are messing up the offset calculations when we import
C++ fields to Swift. We assume that the size of the field is determined
by the type of the field. This is not true for fields marked with
no_unique_address. Those fields can have 0 size while the
sizeof(decltype(field)) is still 1.
rdar://143907490
This commit removes the guardrails in ImportDecl.cpp:SwiftDeclConverter
that prevent it from importing non-public C++ members. It also
accordingly adjusts all code that assumes generated Swift decls should
be public. This commit does not import non-public inherited members;
that needs its own follow-up patch.
Note that Swift enforces stricter invariants about access levels than C++.
For instance, public typealiases cannot be assigned private underlying types,
and public functions cannot take or return private types. Meanwhile,
both of these patterns are supported in C++, where exposing private types
from a class's public interface is considered feature. As far as I am aware,
Swift was already importing such private-containing public decls from C++
already, but I added a test suite, access inversion, that checks and
documents this scenario, to ensure that it doesn't trip any assertions.
We do not need to borrow from view objects passed by value but we need
to borrow from owners taken by const reference regardless of whether it
was annotated using lifetimebound or lifetime_capture_by.
ClangImporter will generate value and default initializers for certain
structs imported from C++. These generated initializers have no
associated lifetime dependence information so they will trigger spurious
errors for non-escapable types. This patch makes sure these are marked
as unsafe so the type checker will not generate errors for them.
Moreover, the generated default initializer would trigger a crash for
non-escapable types as the builtin to zero initialize an object does not
support non-escapable types yet.
rdar://143040862
Follow-up from #78132, which did not fix issues related to eagerly imported members like subscripts.
This patch restructures recursive ClangRecordMemberLookup requests to importBaseMemberDecl() in the recursive calls, rather than propagating base member decls up to the initial lookup request and doing the import. Doing so seems to fix lingering resolution issues (which I've added to the regression tests).
rdar://141069984
In strict safe mode we should consider all C++ APIs with non-escapable
parameters unsafe unless they have their lifetimes annotated. This can
be done using [[clang::lifetimebound]], [[clang::lifetime_capture_by]],
or [[clang::noescape]].
Swift imports template specializations as a standalone type (not as an
instantiation of a generic) so unsafety is not propagated from the
template arguments to the specialization. This PR propagates this
information explicitly.
Introduce an `unsafe` expression akin to `try` and `await` that notes
that there are unsafe constructs in the expression to the right-hand
side. Extend the effects checker to also check for unsafety along with
throwing and async operations. This will result in diagnostics like
the following:
10 | func sum() -> Int {
11 | withUnsafeBufferPointer { buffer in
12 | let value = buffer[0]
| | `- note: reference to unsafe subscript 'subscript(_:)'
| |- warning: expression uses unsafe constructs but is not marked with 'unsafe'
| `- note: reference to parameter 'buffer' involves unsafe type 'UnsafeBufferPointer<Int>'
13 | tryWithP(X())
14 | return fastAdd(buffer.baseAddress, buffer.count)
These will come with a Fix-It that inserts `unsafe` into the proper
place. There's also a warning that appears when `unsafe` doesn't cover
any unsafe code, making it easier to clean up extraneous `unsafe`.
This approach requires that `@unsafe` be present on any declaration
that involves unsafe constructs within its signature. Outside of the
signature, the `unsafe` expression is used to identify unsafe code.
The std::basic_string class is escapable only if its template argument
is escapable. This change helps us consider the regular std::string type
with the non-escapable char template argument as self-contained and a
safe type to use. This prevents spurious warnings in strict memory
safety mode.
Instead of producing a warning for each use of an unsafe entity,
collect all of the uses of unsafe constructs within a given function
and batch them together in a single diagnostic at the function level
that tells you what you can do (add `@unsafe` or `@safe(unchecked)`,
depending on whether all unsafe uses were in the definition), plus
notes identifying every unsafe use within that declaration. The new
diagnostic renderer nicely collects together in a single snippet, so
it's easier to reason about.
Here's an example from the embedded runtime that previously would have
been 6 separate warnings, each with 1-2 notes:
```
swift/stdlib/public/core/EmbeddedRuntime.swift:397:13: warning: global function 'swift_retainCount' involves unsafe code; use '@safe(unchecked)' to assert that the code is memory-safe
395 |
396 | @_cdecl("swift_retainCount")
397 | public func swift_retainCount(object: Builtin.RawPointer) -> Int {
| `- warning: global function 'swift_retainCount' involves unsafe code; use '@safe(unchecked)' to assert that the code is memory-safe
398 | if !isValidPointerForNativeRetain(object: object) { return 0 }
399 | let o = UnsafeMutablePointer<HeapObject>(object)
| | `- note: call to unsafe initializer 'init(_:)'
| `- note: reference to unsafe generic struct 'UnsafeMutablePointer'
400 | let refcount = refcountPointer(for: o)
| | `- note: reference to let 'o' involves unsafe type 'UnsafeMutablePointer<HeapObject>'
| `- note: call to global function 'refcountPointer(for:)' involves unsafe type 'UnsafeMutablePointer<Int>'
401 | return loadAcquire(refcount) & HeapObject.refcountMask
| | `- note: reference to let 'refcount' involves unsafe type 'UnsafeMutablePointer<Int>'
| `- note: call to global function 'loadAcquire' involves unsafe type 'UnsafeMutablePointer<Int>'
402 | }
403 |
```
Note that we have lost a little bit of information, because we no
longer produce "unsafe declaration was here" notes pointing back at
things like `UnsafeMutablePointer` or `recountPointer(for:)`. However,
strict memory safety tends to be noisy to turn on, so it's worth
losing a little bit of easily-recovered information to gain some
brevity.
Previously the check statement did not account for attribute groups.
This patch adds a glob at the end of the CHECK statement to allow
trailing attribute groups, and also relaxes the pattern at the
beginning.
rdar://141662805
Nested calls to importBaseMemberDecl() subvert its cache and compromise its idempotence, causing the semantic checker to spuriously report ambiguous member lookups when multiple ClangRecordMemberLookup requests are made (e.g., because of an unrelated missing member lookup).
One such scenario is documented as a test case: test/Interop/Cxx/class/inheritance/inherited-lookup-typechecker.swift fails without this patch because of the expected error from the missing member. Meanwhile, test/Interop/Cxx/class/inheritance/inherited-lookup-executable.swift works because it does not attempt to access a missing member.
This patch fixes the issue by only calling importBaseMemberDecl() in the most derived class (where the ClangRecordMemberLookup originated, i.e., not in recursive requests).
As a consequence of my patch, synthesized member accessors in the derived class directly invoke the member from the base class where the member is inherited from, rather than incurring an indirection at each level of inheritance. As such, the synthesized symbol names are different (and shorter). I've taken this opportunity to update the relevant tests to // CHECK for more of the mangled symbol, rather than only the synthesized symbol prefix, for more precise testing and slightly better readability.
rdar://141069984
The C++ span should be a non-escapable type but is imported as escapable
for backward compatibility reason. This is inherently unsafe, so make
sure std::span is imported as such. In the future, we plan to generate
safe overloads using Swift's Span and that will be the preferred way of
using the API.
In C++, a primary base class that is placed in the beginning of the type's memory layout isn't always the type that is the first in the list of bases – the base types might be laid out in memory in a different order.
This makes sure that IRGen handles base types of C++ structs in the correct order.
This fixes an assertion in asserts-enabled compilers, and an out-of-memory error in asserts-disabled compilers. The issue was happening for both value types and foreign reference types. This change also includes a small refactoring to reuse the logic between the two code paths.
rdar://140848603
We only add conditional annotations because those do not break backward
compatibility (we might import span and similar view types as
non-escapable in the future). We inject these annotations in the
importer to make sure we have consistent behavior acress the different
standard library implementations. Once we can ship APINotes for the STL
and we have conditional escapability support in APINotes we can migrate
to that solution. But it is not possible as of today and Clang already
has precedent of injecting information for the STL with lifetimebound.
rdar://139065558
Unfortunately, importing them as is results in ambiguous call sites.
E.g., std::vector::push_back has overloads for lvalue reference and
rvalue reference and we have no way to distinguish them at the call site
in Swift. To overcome this issue, functions with rvalue reference
parameters are imported with 'consuming:' argument labels.
Note that, in general, move only types and consuming is not properly
supported in Swift yet. We do not invoke the dtor for the moved-from
objects. This is a preexisting problem that can be observed with move
only types before this PR, so the fix will be done in a separate PR.
Fortunately, for most types, the moved-from objects do not require
additional cleanups.
rdar://125816354