Explanation: Some functions are implemented both in libc and libc++.
Clang uses the enable_if attribute to resolve otherwise ambiguous
functions calls. This PR makes the name lookup aware of this attribute.
Issue: rdar://152192945
Risk: Low, only C/C++ APIs with enable_if attributes are affected.
Testing: Regression test added.
Original PR: #82019
Reviewer: @hnrklssn
Textual interfaces for 'Darwin' built with recent compilers specify that it is built witout C++ interop enabled. However, to ensure compatibility with versions of the 'Darwin' module built with older compilers, we hard-code this fact. This is required to break the module cycle that occurs when building the 'Darwin' module with C++ interop enabled, where the underlying 'Darwin' clang module depends on C++ standard library for which the compiler brings in the 'CxxStdlib' Swift overlay, which depends on 'Darwin'.
When the compiler is building a module without a defined formal C++ interop mode (e.g. building a textual interface which specifies it was built without C++ interop enabled), avoid looking up the C++ standard library Swift overlay for it. This is required for the case of the Darwin module, for example, which includes headers which map to C++ stdlib headers when the compiler is operating in C++ interop mode, but the C++ standard library Swift overlay module itself depends on 'Darwin', which results in a cycle. To resolve such situations, we can rely on the fact that Swift textual interfaces of modules which were not built with C++ interop must be able to build without importing the C++ standard library Swift overlay, so we avoid specifying it as a dependency for such modules. The primary source module, as well as Swift textual module dependencies which were built with C++ interop will continue getting a direct depedency of the 'CxxStdlib' Swift module.
This was previously fixed in the dependency scanner for explicitly-built modules in https://github.com/swiftlang/swift/pull/81415.
This fixes a compiler bug that got exposed by f11abac652.
If a C++ type is declared in a nested Clang submodule, Swift was emitting errors that look like:
```
Type alias 'string' is not available due to missing import of defining module 'fwd’
```
rdar://146899125
It is possible for a module interface (e.g., ModuleA) to be generated
with C++ interop disabled, and then rebuilt with C++ interop enabled
(e.g., because ModuleB, which imports ModuleA, has C++ interop enabled).
This circumstance can lead to various issues when name lookup behaves
differently depending on whether C++ interop is enabled, e.g., when
a module name is shadowed by a namespace of the same name---this only
happens in C++ because namespaces do not exist in C. Unfortunately,
naming namespaces the same as a module is a common C++ convention,
leading to many textual interfaces whose fully-qualified identifiers
(e.g., c_module.c_member) cannot be correctly resolved when C++ interop
is enabled (because c_module is shadowed by a namespace of the same
name).
This patch does two things. First, it introduces a new frontend flag,
-formal-cxx-interoperability-mode, which records the C++ interop mode
a module interface was originally compiled with. Doing so allows
subsequent consumers of that interface to interpret it according to the
formal C++ interop mode. Note that the actual "versioning" used by this
flag is very crude: "off" means disabled, and "swift-6" means enabled.
This is done to be compatible with C++ interop compat versioning scheme,
which seems to produce some invalid (but unused) version numbers. The
versioning scheme for both the formal and actual C++ interop modes
should be clarified and fixed in a subsequent patch.
The second thing this patch does is fix the module/namespace collision
issue in module interface files. It uses the formal C++ interop mode to
determine whether it should resolve C++-only decls during name lookup.
For now, the fix is very minimal and conservative: it only filters out
C++ namespaces during unqualified name lookup in an interface that was
originally generated without C++ interop. Doing so should fix the issue
while minimizing the chance for collateral breakge. More cases other
than C++ namespaces should be added in subsequent patches, with
sufficient testing and careful consideration.
rdar://144566922
This makes sure that the compiler does not emit `-enable-experimental-cxx-interop`/`-cxx-interoperability-mode` flags in `.swiftinterface` files. Those flags were breaking explicit module builds. The module can still be rebuilt from its textual interface if C++ interop was enabled in the current compilation.
rdar://140203932
This makes sure that when Swift is generating a `.swiftinterface` file for a Swift module with a dependency on C++ module, `-enable-experimental-cxx-interop` is emitted under `// swift-module-flags:`.
The module interface might refer to C++ symbols which are not available in Swift without C++ interop enabled. This caused a build error for Swift LLVM bindings during `verify-module-interface` stage: Swift tried to import the module interface and couldn't find C++ stdlib headers because C++ interop was disabled.