When importing a C++ class template instantiation, Swift translates the template parameter type names from C++ into their Swift equivalent.
For instance, `basic_string<wchar_t, char_traits<wchar_t>, allocator<wchar_t>>` gets imported as `basic_string<Scalar, char_traits<Scalar>, allocator<Scalar>>`: `wchar_t` is imported as `CWideChar`, which is a typealias for `Scalar` on most platforms including Darwin. Notice that Swift goes through the `CWideChar` typealias on the specific platform. Another instantiation `basic_string<uint32_t, char_traits<uint32_t>, allocator<uint32_t>>` also gets imported as `basic_string<Scalar, char_traits<Scalar>, allocator<Scalar>>`: `uint32_t` is also imported as `Scalar`. This is problematic because we have two distinct C++ types that have the same name in Swift.
This change makes sure Swift doesn't go through typealiases when emitting names of template parameters, so `wchar_t` would now get printed as `CWideChar`, `int` would get printed as `CInt`, etc.
This also encourages clients to use the correct type (`CInt`, `CWideChar`, etc) instead of relying on platform-specific typealiases.
rdar://115673622
I discovered this when experimenting with `std::map::iterator`, which has a const overload of `operator*` that returns a non-const reference, and does not have a const overload of `operator*`.
rdar://112471779
This makes sure that Swift is only auto-conforming C++ container types to `CxxSequence`/`CxxConvertibleToCollection` if they expose non-mutating `begin()` and `end()` methods.
We might want to make `begin()` and `end()` non-mutating in the near future to enable performance optimizations. This change makes sure that client code relying on the automatic conformances doesn't suddenly stop compiling if/when the mutability requirement on the protocol function changes.
This extends the existing auto-conformance mechanism to synthesize the conformances to `CxxConvertibleToCollection` protocol for C++ sequence types.
This means that the developer can now call `Array(myCxxSequence)` or `Set(myCxxSequence)` without adding any extensions manually.
Iterating over a `CxxSequence` that is not a `CxxRandomAccessCollection` triggers a copy of the C++ collection. Let's disable the automatic conformances until we find a more efficient solution.
This means that for now developers won't be able to iterate over a `std::set` or `std::list` with a Swift for-in loop. I will submit a separate patch with an alternative solution for such types.
C++ random access collections, such as `std::vector` or `std::string`, are not affected.
This makes ClangImporter automatically conform C++ collection types to `Cxx.CxxRandomAccessCollection` protocol.
We consider a C++ sequence type to be a random access collection type its iterator conforms to `UnsafeCxxRandomAccessIterator`.
This lifts the requirement for the user to explicitly add `import Cxx` in Swift code that relies on protocols from the `Cxx` module, such as `CxxSequence`.
To determine whether to conform a C++ type to `CxxSequence` protocol automatically, ClangImporter checks if the corresponding iterator type conforms to `UnsafeCxxInputIterator`.
This logic had false-positives, e.g. `Optional<OpaquePointer>` was treated as if it conforms to `UnsafeCxxInputIterator` while it actually doesn't. This happened because `lookupConformance` returned a conformance with a conditional requirement (`Wrapped : UnsafeCxxInputIterator`) that is not satisfied for `OpaquePointer`.
rdar://100265664
This makes ClangImporter automatically conform C++ sequence types to `Cxx.CxxSequence` protocol.
We consider a C++ type to be a sequence type if it defines `begin()` & `end()` methods that return iterators of the same type which conforms to `UnsafeCxxInputIterator`.