Some invalid specializations were previously allowed by the compiler
and we found some existing code that used that (albeit invalid) syntax,
so we need to stage that error as a warning until Swift 6 language mode
to avoid source compatibility break.
Resolves: rdar://134740240
Always add constraints, find fixes during simplify.
New separate fix for allow generic function specialization.
Improve parse heuristic for isGenericTypeDisambiguatingToken.
Teach preCheckExpression() about UnresolvedSpecializeExpr
where the base is a TypeExpr.
This allows us to type check expressions like
'[Outer<T>.Inner<U>]()' by folding them down to a TypeExpr
with an array type.
Fixes: https://bugs.swift.org/browse/SR-3208
When '@' or 'inout' found in expression context, try to parse it as a type.
So that we can resolve '[(inout Int) -> Void]' as a TypeExpr expression
for ArraySliceType.
Previously, '@' token was unconditionally considered as isStartOfDecl()
Since canParseTypeTupleBody() fails at isStartOfDecl(),
generics arguments containing attributes, e.g.
Array<(@convention(block) () -> Int) -> Void>
failed to be parsed.
This commit defines the ‘Any’ keyword, implements parsing for composing
types with an infix ‘&’, and provides a fixit to convert ‘protocol<>’
- Updated tests & stdlib for new composition syntax
- Provide errors when compositions used in inheritance.
Any is treated as a contextual keyword. The name ‘Any’
is used emit the empty composition type. We have to
stop user declaring top level types spelled ‘Any’ too.
Consider this code:
struct A<T> {
struct B {}
struct C<U> {}
}
Previously:
- getDeclaredType() of 'A.B' would give 'A<T>.B'
- getDeclaredTypeInContext() of 'A.B' would give 'A<T>.B'
- getDeclaredType() of 'A.C' would give 'A<T>.C'
- getDeclaredTypeInContext() of 'A.C' would give 'A<T>.C<U>'
This was causing problems for nested generics. Now, with this change,
- getDeclaredType() of 'A.B' gives 'A.B' (*)
- getDeclaredTypeInContext() of 'A.B' gives 'A<T>.B'
- getDeclaredType() of 'A.C' gives 'A.C' (*)
- getDeclaredTypeInContext() of 'A.C' gives 'A<T>.C<U>'
(Differences marked with (*)).
Also, this change makes these accessors fully lazy. Previously,
only getDeclaredTypeInContext() and getDeclaredIterfaceType()
were lazy, whereas getDeclaredType() was built from validateDecl().
Fix a few spots where the return value wasn't being checked
properly.
These functions return ErrorType if a circularity was detected via
the generic parameter list, or if the extension did not resolve.
They return Type() if the extension cannot be resolved *yet*.
This is pretty subtle, and I'll need to do another pass over
callers of these functions at some point. Many of them should be
moved over to use getSelfInContext(), getSelfOfContext() and
getSelfInterfaceType() instead.
Finally, this patch consolidates logic for diagnosting invalid
nesting of types.
The parser had some code for protocols in bad places and bad things
inside protocols, and Sema had several different bail-outs for
bad things in protocols, nested generic types, and stuff nested
inside protocol extensions.
Combine all of these into a single set of checks in Sema. Note
that we no longer give up early if we find invalid nesting.
Leaving decls unvalidated and un-type-checked only leads to
further problems. Now that all the preliminary crap has been
fixed, we can go ahead and start validating these funny nested
decls, actually fixing some crashers in the process.
along with recent policy changes:
- For expression types that are not specifically handled, make sure to
produce a general "unused value" warning, catching a bunch of unused
values in the testsuite.
- For unused operator results, diagnose them as uses of the operator
instead of "calls".
- For calls, mutter the type of the result for greater specificity.
- For initializers, mutter the type of the initialized value.
- Look through OpenExistentialExpr's so we can handle protocol member
references propertly.
- Look through several other expressions so we handle @discardableResult
better.
This exposes some wierdness with while_parsing_as_left_angle_bracket where
one case the note is being is when resolveType returns a failure. However,
resolveType can produce a failure without emitting a diagnostic, and this
can lead to us generating a note unattached to an error. Just remove this
case.
instead of treating it as an erroneous subexpr. This was causing <<error type>> to pop
out in diagnostics, and had a hackaround that dissolves now from CSDiags.
Swift SVN r30442
If 'x.init' appears as a member reference other than 'self.init' or 'super.init' within an initializer, treat it as a regular static member lookup for 'init' members. This allows a more explicit syntax for dynamic initializations; 'self.someMetatype()' looks too much like it's invoking a method. It also allows for partial applications of initializers using 'someMetatype.init' (though this needs some SILGen fixes, coming up next). While we're in the neighborhood, do some other correctness and QoI fixes:
- Only lookup initializers as members of metatypes, not instances, and add a fixit (instead of crashing) to insert '.dynamicType' if the initializer is found on an instance.
- Make it so that constructing a class-constrained archetype type correctly requires a 'required' or protocol initializer.
- Warn on unused initializer results. This seems to me like just the right thing to do, but is also a small guard against the fact that 'self.init' is now valid in a static method, but produces a newly-constructed value instead of delegating initialization (and evaluating to void).
Swift SVN r29344
The rule changes are as follows:
* All functions (introduced with the 'func' keyword) have argument
labels for arguments beyond the first, by default. Methods are no
longer special in this regard.
* The presence of a default argument no longer implies an argument
label.
The actual changes to the parser and printer are fairly simple; the
rest of the noise is updating the standard library, overlays, tests,
etc.
With the standard library, this change is intended to be API neutral:
I've added/removed #'s and _'s as appropriate to keep the user
interface the same. If we want to separately consider using argument
labels for more free functions now that the defaults in the language
have shifted, we can tackle that separately.
Fixes rdar://problem/17218256.
Swift SVN r27704
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
When parsing an expression, if we see the production [[identifier '<']], use the following heuristic to choose whether to parse it as a type list or as an operator expression:
- Speculatively parse the subsequent production as a type parameter list.
- If the parse succeeds, examine the token after the closing '>'. If it is one of the following:
l_paren_following
l_square_following
r_paren
r_square
l_brace
r_brace
comma
semicolon
period
then accept the parse as a type list.
- If the parse fails, or if the type list is not followed by one of those tokens, reject the type list and parse as an operator expression.
This only implements the parsing rule. The type parameters are just dropped on the floor--the AST representation and Sema changes are forthcoming. Encouragingly, no test or library code appears to be broken by this rule.
Swift SVN r4044