Defines the %target-playground-build-run-swift macro in the local lit config for PlaygroundTransform which contains all the boilerplate code used by most PlaygroundTransform tests:
* Build a PlaygroundSupport module
* Build the test source into an executable, linking PlaygroundSupport
* Codesign and run the executable
Generalize the existing `-playground-high-performance` flag into a set of options that control various aspects of the "playground transformation" in Sema.
This commit adds the first two of those controllable parts of the transform, matching what the existing flag already controls (scope entry/exit and function arguments), but in an extensible way. The intent is for this to be a scalable way to control a larger set of upcoming options.
So instead of a single flag, we represent the playground transform options as a set of well-defined choices, with a new `-playground-option` flag to individually enable or disable those options (when prefixed with "No", the corresponding option is instead disabled). Enabling an already-enabled option or disabling an already-disabled option is a no-op.
For compatibility, the existing `-playground-high-performance` flag causes "expensive" transforms to be disabled, as before. We can also leave it as a useful shorthand to include or exclude new options even in the future, based on their cost. There is a comment on the old function indicating that new code should use the more general form, but it remains for clients like LLDB until they can switch over.
The machinery for implementing the playground options is similar to how `Features.def` works, with a new `PlaygroundOptions.def` that defines the supported playground transform options. Each playground definition specifies the name and description, as well as whether the option is enabled by default, and whether it's also enabled in the "high performance" case.
Adding a new option in the future only requires adding it to `PlaygroundOptions.def`, deciding whether it should be on or off by default, deciding whether it should also be on or off in `-playground-high-performance` mode, and checking for its presence from the appropriate places in `PlaygroundTransform.cpp`.
Note that this is intended to control the types of user-visible results that the invoker of the compiler wants, from an externally detectable standpoint. Other flags, such as whether or not to use the extended form of the callbacks, remain as experimental features, since those deal with the mechanics and not the desired observed behavior.
rdar://109911673
The `-force-single-frontend-invocation` flag predates WMO and is now an
alias for `-whole-module-optimization`. We should use the latter and let
the former fade into history.
This change PCMacro and PlaygroundTransform to return an a moduleID and
fileID in addition to the source location information. The Frontend has
been changed to run PCMacro and PlaygroundTransform on all input files
instead of the main file only.
The tests have been updated to conform to these changes with an addition
of module and file ID specific tests. The Playgrounds related tests were
adjusted to make a module out of the stub interface files since those
files should not have PCMacro and PlaygroundTransform applied to them.
rdar://problem/50821146
Currently, the playground transform requires the use of dollar-identifiers as the functions are prefixed with "$builtin".
This commit removes that requirement by replacing "$builtin" with "__builtin".
This aligns with the PC macro.
This addresses <rdar://problem/36031860>.
Based off the PlaygroundTransform, this new ASTWalker leaves calls to __builtin_pc_before and __builtin_pc_after before and after a user would expect a program counter to enter a range of source code.