We are already doing this for most of the target-swift-frontend ones. In a
subsequent commit, I am going to remove the redundant ones.
NOTE: On Darwin, I have not enabled it on the %target-swift-frontend mock SDK
commands. I ran into an issue with one of the PrintAsObjC tests that I am still
tracking down. I would rather just get this turned on to prevent further
regressions.
I also updated a few tests that needed some small tweaks to pass
this. Specifically:
1. Some parser tests needed some extra ossa insts to pass the verifier. This
doesn't effect what they actually test.
2. IRGen tests that should never have processed ossa directly. Today, we are
working towards a world where IRGen never processes [ossa] directly. Instead we
lower first. If/when that changes, we should add back in specific [ossa] tests.
3. A singular SILOptimizer definite init test case where the ownership verifier
fails due to a case which DI already flags as illegal (we just crash earlier). I
am going to look into fixing that by putting in errors in the typechecker or in
SILGen (not sure yet). I changed it to use target-swiftc_driver which does not
have ownership verification enabled.
In a previous commit, I banned in the verifier any SILValue from producing
ValueOwnershipKind::Any in preparation for this.
This change arises out of discussions in between John, Andy, and I around
ValueOwnershipKind::Trivial. The specific realization was that this ownership
kind was an unnecessary conflation of the a type system idea (triviality) with
an ownership idea (@any, an ownership kind that is compatible with any other
ownership kind at value merge points and can only create). This caused the
ownership model to have to contort to handle the non-payloaded or trivial cases
of non-trivial enums. This is unnecessary if we just eliminate the any case and
in the verifier separately verify that trivial => @any (notice that we do not
verify that @any => trivial).
NOTE: This is technically an NFC intended change since I am just replacing
Trivial with Any. That is why if you look at the tests you will see that I
actually did not need to update anything except removing some @trivial ownership
since @any ownership is represented without writing @any in the parsed sil.
rdar://46294760
This is how we originally controlled whether or not we printed out ownership
annotations when we printed SIL. Since then, I have changed (a few months ago I
believe) the ownership model eliminator to know how to eliminate these
annotations from the SIL itself. So this hack can be removed.
As an additional benefit, this will let me rename -enable-sil-ownership to
-enable-sil-ownership-verifier. This will I hope eliminate confusion around this
option in the short term while I am preparing to work on semantic sil again.
rdar://42509812
i.e for:
enum Indirect<T> {
indirect cast payload(first: T, second :T)
}
let _ = Indirect<X>
The payload's SIL box type will be:
$<t_0_0> { var (first: t_0_0, second: t_0_0) } <X>
rdar: //36799330
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236