Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
For now, always use indirect convention for types with packs. This is
motivated by the fact that getting from/setting to a pack currently
requires addresses which aren't materialized for tuples. In the
fullness of time, these values should be direct in opaque values mode,
but for now it can be postponed.
The new instruction is needed for opaque values mode to allow values to
be extracted from tuples containing packs which will appear for example
as function arguments.
The new instruction wraps a value in a `@sil_weak` box and produces an
owned value. It is only legal in opaque values mode and is transformed
by `AddressLowering` to `store_weak`.
The new instruction unwraps an `@sil_weak` box and produces an owned
value. It is only legal in opaque values mode and is transformed by
`AddressLowering` to `load_weak`.
The old syntax was
@opened("UUID") constraintType
Where constraintType was the right hand side of a conformance requirement.
This would always create an archetype where the interface type was `Self`,
so it couldn't cope with member types of opened existential types.
Member types of opened existential types is now a thing with SE-0309, so
this lack of support prevented writing SIL test cases using this feature.
The new syntax is
@opened("UUID", constraintType) interfaceType
The interfaceType is a type parameter rooted in an implicit `Self`
generic parameter, which is understood to be the underlying type of the
existential.
Fixes rdar://problem/93771238.
Merge the AddressLowering pass from its old development branch and update
it so we can begin incrementally enabling it under a flag.
This has been reimplemented for simplicity. There's no point in
looking at the old code.
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
This has the same semantics as open_existential_box, but returns an object value
instead of an address.
This is used in SIL opaque values mode. Attempting to reuse open_existential_box
in this mode causes SIL type inconsistencies that are too difficult to work
around. Adding this instruction allows for consistent handling of opaque values.
The original versions of several of these currently redundant instructions will
be removed once the SIL representation stabilizes.
These instructions have the same semantics as the *ExistentialAddr instructions
but operate directly on the existential value, not its address.
This is in preparation for adding ExistentialBoxValue instructions.
The previous name would cause impossible confusion with "opaque existentials"
and "opaque existential boxes".
[NFC] Add -enable-sil-opaque-values frontend option.
This will be used to change the SIL-level calling convention for opaque values,
such as generics and resilient structs, to pass-by-value. Under this flag,
opaque values have SSA lifetimes, managed by copy_value and destroy_value.
This will make it easier to optimize copies and verify ownership.
* [SILGen] type lowering support for opaque values.
Add OpaqueValueTypeLowering.
Under EnableSILOpaqueValues, lower address-only types as opaque values.
* [SIL] Fix ValueOwnershipKind to support opaque SIL values.
* Test case: SILGen opaque value support for Parameter/ResultConvention.
* [SILGen] opaque value support for function arguments.
* Future Test case: SILGen opaque value specialDest arguments.
* Future Test case: SILGen opaque values: emitOpenExistential.
* Test case: SIL parsing support for EnableSILOpaqueValues.
* SILGen opaque values: prepareArchetypeCallee.
* [SIL Verify] allow copy_value for EnableSILOpaqueValues.
* Test cast: SIL serializer support for opaque values.
* Add a static_assert for ParameterConvention layout.
* Test case: Mandatory SILOpt support for EnableSILOpaqueValues.
* Test case: SILOpt support for EnableSILOpaqueValues.
* SILGen opaque values: TypeLowering emitCopyValue.
* SILBuilder createLoad. Allow loading opaque values.
* SIL Verifier. Allow loading and storing opaque values.
* SILGen emitSemanticStore support for opaque values.
* Test case for SILGen emitSemanticStore.
* Test case for SIL mandatory support for inout assignment.
* Fix SILGen opaque values test case after rebasing.