I'm not completely sure why this code pattern triggers this --- or really,
why other code patterns don't --- but it's easy to fix.
Fixes rdar://142636640
Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
Use the `%target-swift-5.1-abi-triple` substitution to compile the tests for
deployment to the minimum OS versions required for use of _Concurrency APIs,
instead of disabling availability checking.
The fix for #72484 didn't properly handle the case of a "generic" context
where all the type parameters had concrete assignments. In this situation,
F.mapTypeIntoContext does not work because the function has no generic
environment.
Fixes rdar://126085573
This allows us to propagate abstraction patterns from optional parameters
all the way to closure emission, which optimizes some code patterns but
(more importantly) propagates our knowledge that we're converting to an
`@isolated(any)` function type down to closure emission, allowing us to
set the isolation correctly.
There are still some conversion cases missing --- if we can't combine
conversions for whatever reason, we should at least shift our knowledge
that we need to produce an `@isolated(any)` type down, the same way that
we shift it when emitting a closure that we can't directly emit in the
target abstraction pattern. But this completes the obvious cases of
peepholing for closure emission.
First, and I really should've checked this, but global actors do not
require `shared` to return `Self`; adjust the logic to propagate the
right formal type to the erasure logic.
Second, handle attempts to erase the isolation of something isolated to
a distributed actor using the magic Actor conformance that Doug added.
This only works when the actor is local, but it shouldn't be difficult to
enforce that we only attempt to erase isolation what that's true --- we
need to prevent partial application of distributed actors, and we need to
disallow explicit isolated captures of distributed actors when we're not
currently isolated to it. Otherwise, it's not possible to get an
@isolated(any) function value with an isolation that isn't the current
function's isolation, which means it always has to be local.
Fixed rdar://123734019
We do this by pushing the conversion down to the emission of the
closure expression, then teaching closure emission to apply the isolation
to the closure. Ideally, we combine the isolation along with the rest of
the conversion peephole, but if necessary, we make sure we emit the
isolation.
The main piece that's still missing here is support for closures;
they actually mostly work, but they infer the wrong isolation for
actor-isolated closures (it's not expressed in the type, so obviously
they're non-isolated), so it's not really functional. We also have
a significant problem where reabstraction thunks collide incorrectly
because we don't mangle (or represent!) formal isolation into
SILFunctionType; that's another follow-up. Otherwise, I think SILGen
is working.