Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
Optionally, the dependency to the initialization of the global can be specified with a dependency token `depends_on <token>`.
This is usually a `builtin "once"` which calls the initializer for the global variable.
`Builtin.once` has type `(Builtin.RawPointer, (Builtin.RawPointer) -> ())`
at Swift level, but lazy global init passes its initializer as `() -> ()`,
so their callee and caller signatures doesn't match.
The SILGen testsuite consists of valid Swift code covering most language
features. We use these tests to verify that no unknown nodes are in the
file's libSyntax tree. That way we will (hopefully) catch any future
changes or additions to the language which are not implemented in
libSyntax.
It is still not clear to me when we access global variables from other
modules directly, versus using accessors; it seems to be controlled
by the -sil-serialize-all flag, rather than any language feature.
Until/if we add a @_fixed_layout equivalent for globals, I can't really
test direct access of globals from other modules; when we figure out
the story here I'll be able to add more tests and also tighten up
some isResilient() checks in the global code, but what's in there now
seems to work.
This matches how dispatch_once works in C, dramatically cutting the cost of a global accessor by avoiding the runtime call in the hot path and giving the global a unique branch for the CPU to predict away. For now, only do this for Darwin; non-ObjC platforms don't necessarily expose their "done" value as ABI like ours do.
While we're here, change "once" to take a thin function pointer. We don't ever emit global initializers with context dependencies, and this simplifies the runtime glue between swift_once and dispatch_once/std::call_once a bit.
Swift SVN r28166
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
Change all the existing addressors to the unsafe variant.
Update the addressor mangling to include the variant.
The addressor and mutable-addressor may be any of the
variants, independent of the choice for the other.
SILGen and code synthesis for the new variants is still
untested.
Swift SVN r24387
This allows making global addressors fragile (They use globalinit_{token,func} for initialization of globals).
It has no noticable performance impact on our benchmarks, but it removes an ugly hack which explicitly
prevented addressors from being fragile.
Swift SVN r22812
This allows making global addressors fragile (They use globalinit_{token,func} for initialization of globals).
It has no noticable performance impact on our benchmarks, but it removes an ugly hack which explicitly
prevented addressors from being fragile.
Swift SVN r22795
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
Update SILGen to create SILGlobalVariable and SILGlobalAddrInst instead of
GlobalAddrInst. When we see a definition for a global variable, we create
the corrsponding SILGlobalVariable definition.
When creating SILGlobalVariable from a global VarDecl, we mangle the global
VarDecl in the same way as we mangle it at IRGen. The SILLinkage is also
set in the same way as we set it at IRGen.
At IRGen, we use the associated VarDecl for SILGlobalVariable if it exists,
to have better debugging information.
We set the initializer for SILGlobalVariable definition only.
We also handle SILGlobalAddrInst in various SILPasses, in the similar way
as we handle GlobalAddrInst.
rdar://15493694
Swift SVN r21887
For every global pattern binding, emit a lazy initializer token and function that initializes the global variables in that binding. For each of those vars, create an accessor that Builtin.once's the lazy initializer before producing the address. Hide this all behind a switch till the surrounding serialization and IRGen infrastructure catches up.
Swift SVN r10511