Always call createMarkUnresolvedNonCopyableValueInst for a constructor
with move-only 'self'. Handle 'self' that is either returned by value
or as an indirect result
Fixes rdar://142690658 (In ~Copyable public struct,
an init with COW type param causes compiler error)
Find all the usages of `--enable-experimental-feature` or
`--enable-upcoming-feature` in the tests and replace some of the
`REQUIRES: asserts` to use `REQUIRES: swift-feature-Foo` instead, which
should correctly apply to depending on the asserts/noasserts mode of the
toolchain for each feature.
Remove some comments that talked about enabling asserts since they don't
apply anymore (but I might had miss some).
All this was done with an automated script, so some formatting weirdness
might happen, but I hope I fixed most of those.
There might be some tests that were `REQUIRES: asserts` that might run
in `noasserts` toolchains now. This will normally be because their
feature went from experimental to upcoming/base and the tests were not
updated.
I was originally hoping to reuse mark_must_check for multiple types of checkers.
In practice, this is not what happened... so giving it a name specifically to do
with non copyable types makes more sense and makes the code clearer.
Just a pure rename.
We want these to be borrowed in most cases and to create an appropriate onion
wrapping. Since we are doing this in more cases now, we fix a bunch of cases
where we used to be forced to insert a copy since a coroutine or access would
end too early.
The reason why I am doing this is that this was not part of the original
evolution proposal (it was called an extension) and after some discussion it was
realized that partial consumption would benefit from discussion on the forums.
rdar://111353459
One can still in resilient frameworks have noncopyable frozen types.
This means that one cannot make a noncopyable:
1. Full resilient public type.
2. @usableFromInline type.
NOTE: One can still use a frozen noncopyable type as a usableFromInline class
field. I validated in the attached tests that we get the correct code
generation.
I also eliminated a small bug in TypeCheckDeclPrimary where we weren't using a
requestified attr check and instead were checking directly.
rdar://111125845
This ensures that given a class that contains a noncopyable type that contains
another noncopyable type:
```
@_moveOnly struct S2 {}
@_moveOnly struct S { var s2: S2 }
class C { var s: S }
```
if we call a resilient function that takes C.S.S2:
```
borrowVal(c.s.s2)
```
we properly spill s2 onto the stack using a store_borrow.
Why Do This?
------------
Currently SILGenLValue treats ref_element_addr as a base that it needs to load
from for both copyable and non-copyable types. We keep a separation of concerns
and require emission of resilient functions to handle these loaded values. For
copyable types this means copying the value and storing it into a temporary
stack allocation. For noncopyable types, we never actually implemented this so
we would hit an error in SILGenApply telling us that our resilient function
expected an address argument, but we are passing an object.
To work around this, I updated how we emit borrowed lvalue arguments to in this
case to spill the value into a temporary allocation using a store_borrow. I also
included a test that validates that we properly have a read exclusivity scope
around the original loaded from memory for the entire call site so even though
we are performing a load_borrow and then spilling it, we still have read
exclusivity to the original memory for the entire region meaning that we still
preserve the semantics.
rdar://109171001