Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
The design implemented in this patch is that we lower the types of accessors with pattern substitutions when lowering them against a different accessor, which happens with class overrides and protocol witnesses, and that we introduce pattern substitutions when substituting into a non-patterned coroutine type. This seems to achieve consistent abstraction without introduce a ton of new complexity.
An earlier version of this patch tried to define witness thunks (conservatively, just for accessors) by simply applying the requirement substitutions directly to the requirement. Conceptually that should work, but I ran into a lot of trouble with things that assumed that pattern substitutions didn't conceal significant substitution work. for example, resolving a dependent member in a component type could find a new use of an opaque archetype when the code assumed that such types had already been substituted away. So while I think that is definiteely a promising direction, I had to back that out in order to make the number of changes manageable for a single PR.
As part of this, I had to fix a number of little bugs here and there, some of which I just introduced. One of these bugfixes is a place where the substitution code was trying to improperly abstract function types when substituting them in for a type parameter, and it's been in the code for a really long time, and I'm really not sure how it's never blown up before.
I'm increasingly of the opinion that invocation substitutions are not actually necessary, but that --- after we've solved the substitution issues above --- we may want the ability to build multiple levels of pattern substitution so that we can guarantee that e.g. witness thunks always have the exact component structure of the requirement before a certain level of substitution, thus allowing the witness substitutions to be easily extracted.
Most of this patch is just removing special cases for materializeForSet
or other fairly mechanical replacements. Unfortunately, the rest is
still a fairly big change, and not one that can be easily split apart
because of the quite reasonable reliance on metaprogramming throughout
the compiler. And, of course, there are a bunch of test updates that
have to be sync'ed with the actual change to code-generation.
This is SR-7134.
There were several bits of code which were unnecessarily
repeating the core logic of breaking down an access strategy
and either setting up an LValue or directly emitting it.
These places have now been unified to just create and then
load or othrwise use an LValue.
Introduce a visitor which handles the common parts of breaking
down an access strategy and computing information like the
LValueTypeData. In addition to its direct benefits (which are
somewhat lost in the boilerplate of capturing local state into
the visitor subclass), this eliminates some of the ad-hocness
of how the various emission paths use AccessStrategy.
Finally, implement the MaterializeToTemporary strategy in its
full generality by using the actual read and write sub-strategies
instead of always falling back on calling the getter and setter.
This part is not NFC because it causes us to perform the read
part of a read/write to a stored-with-observers property by
directly accessing the storage instead of calling the getter.
The SILGen testsuite consists of valid Swift code covering most language
features. We use these tests to verify that no unknown nodes are in the
file's libSyntax tree. That way we will (hopefully) catch any future
changes or additions to the language which are not implemented in
libSyntax.
I am going to leave in the infrastructure around this just in case. But there is
no reason to keep this in the tests themselves. I can always just revert this
and I don't think merge conflicts are likely due to previous work I did around
the tooling for this.
Otherwise, the plus_zero_* tests will have plus_zero_* as a module name, causing
massive FileCheck problems.
The reason why I am doing it with the main tests is so that I can use it when
syncing branches/etc.
radar://34222540
We used to give witness thunks public linkage if the
conforming type and the protocol are public.
This is completely unnecessary. If the conformance is
fragile, the thunk should be [shared] [serialized],
allowing the thunk to be serialized into callers after
devirtualization.
Otherwise for private protocols or resilient modules,
witness thunks can just always be private.
This should reduce the size of compiled binaries.
There are two other mildly interesting consequences:
1) In the bridged cast tests, we now inline the witness
thunks from the bridgeable conformances, which removes
one level of indirection.
2) This uncovered a flaw in our accessibility checking
model. Usually, we reject a witness that is less
visible than the protocol; however, we fail to
reject it in the case that it comes from an
extension.
This is because members of an extension can be
declared 'public' even if the extended type is not
public, and it appears that in this case the 'public'
keyword has no effect.
I would prefer it if a) 'public' generated a warning
here, and b) the conformance also generated a warning.
In Swift 4 mode, we could then make this kind of
sillyness into an error. But for now, live with the
broken behavior, and add a test to exercise it to ensure
we don't crash.
There are other places where this "allow public but
ignore it, kinda, except respect it in some places"
behavior causes problems. I don't know if it was intentional
or just emergent behavior from general messiness in Sema.
3) In the TBD code, there is one less 'failure' because now
that witness thunks are no longer public, TBDGen does not
need to reason about them (except for the case #2 above,
which will probably require a similar workaround in TBDGen
as what I put into SILGen).
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
In 74d979f0ac, the policy was changed
so that only value type accessors are ever marked transparent, and
not class accessors.
This was intended to fix a bug where inlining an accessor of an
Objective-C-derived class across module boundaries caused a linker
failure because the accessor referenced a field offset variable,
which has hidden visibility.
However, this also caused a performance regression for Swift native
classes. Bring back the old behavior for Swift native classes in
non-resilient modules.
Fixes <rdar://problem/29884727>.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
The function pointer is a thin function and possibly polymorphic,
so it does not really have an AST type. Instead of pretending it has
an AST type, just return a RawPointer and remove some casts in the
process.
Parameters (to methods, initializers, accessors, subscripts, etc) have always been represented
as Pattern's (of a particular sort), stemming from an early design direction that was abandoned.
Being built on top of patterns leads to patterns being overly complicated (e.g. tuple patterns
have to have varargs and default parameters) and make working on parameter lists complicated
and error prone. This might have been ok in 2015, but there is no way we can live like this in
2016.
Instead of using Patterns, carve out a new ParameterList and Parameter type to represent all the
parameter specific stuff. This simplifies many things and allows a lot of simplifications.
Unfortunately, I wasn't able to do this very incrementally, so this is a huge patch. The good
news is that it erases a ton of code, and the technical debt that went with it. Ignoring test
suite changes, we have:
77 files changed, 2359 insertions(+), 3221 deletions(-)
This patch also makes a bunch of wierd things dead, but I'll sweep those out in follow-on
patches.
Fixes <rdar://problem/22846558> No code completions in Foo( when Foo has error type
Fixes <rdar://problem/24026538> Slight regression in generated header, which I filed to go with 3a23d75.
Fixes an overloading bug involving default arguments and curried functions (see the diff to
Constraints/diagnostics.swift, which we now correctly accept).
Fixes cases where problems with parameters would get emitted multiple times, e.g. in the
test/Parse/subscripting.swift testcase.
The source range for ParamDecl now includes its type, which permutes some of the IDE / SourceModel tests
(for the better, I think).
Eliminates the bogus "type annotation missing in pattern" error message when a type isn't
specified for a parameter (see test/decl/func/functions.swift).
This now consistently parenthesizes argument lists in function types, which leads to many diffs in the
SILGen tests among others.
This does break the "sibling indentation" test in SourceKit/CodeFormat/indent-sibling.swift, and
I haven't been able to figure it out. Given that this is experimental functionality anyway,
I'm just XFAILing the test for now. i'll look at it separately from this mongo diff.
All refutable patterns and function parameters marked with 'var'
is now an error.
- Using explicit 'let' keyword on function parameters causes a warning.
- Don't suggest making function parameters mutable
- Remove uses in the standard library
- Update tests
rdar://problem/23378003
The only caveat is that:
1. We do not properly recognize when we have a let binding and we
perform a guaranteed dynamic call. In such a case, we add an extra
retain, release pair around the call. In order to get that case I will
need to refactor some code in Callee. I want to make this change, but
not at the expense of getting the rest of this work in.
2. Some of the protocol witness thunks generated have unnecessary
retains or releases in a similar manner.
But this is a good first step.
I am going to send a large follow up email with all of the relevant results, so
I can let the bots chew on this a little bit.
rdar://19933044
Swift SVN r27241
This will have an effect on inlining into thunks.
Currently this flag is set for witness thunks and thunks from function signature optimization.
No change in code generation, yet.
Swift SVN r24998
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
use a thin function type.
We still need thin-function-to-RawPointer conversions
for generic code, but that's fixable with some sort of
partial_apply_thin_recoverable instruction.
Swift SVN r24364
optional callback; retrofit existing implementations.
There's a lot of unpleasant traffic in raw pointers here
which I'm going to try to clean up.
Swift SVN r24123